||Jai Sri Gurudev|| S. J. C. INSTITUTE OF TECHNOLOGY, CHICKBALLAPUR

Department of Mathematics

Lecture Notes

Calculus & Linear Algebra (18MAT11)

Prepared By:

Purushotham.P

Assistant Professor

Email id: ppurushothamp48@gmail.com

SJC Institute of Technology

Phone: 8197481658

MODULE - 01
POLAR CURVES AND EVALUATES

Introduction:

Let \overrightarrow{OX} be the intial line or intial ray, there is any point on the plane $P(r,\theta)$ with the radius of Vector OP = r and $|XOP = \theta|$ and $r = f(\theta)$ be a polar curve at the point O(0,0) $P(r,\theta)$ Here, the Coordinates of P

(0,0) (0,0) (0,0) (0,0)

P(r,0) Here, the Coordinates of P is called as the Polar Coordinates.

A. ANGLE BETWEEN RADIUS VECTOR AND TANGENT TO THE POLAR CURVE Let \overrightarrow{OX} be the intial line $P(r,\theta)$ be a point in the plane and $\overrightarrow{OP} = r$ be the

radius of vector and let $r = f(\theta)$ be a polar Curve at the point 'P', 'T' be the tangent to the Curve $r = f(\theta)$ at P and making angle with the intial line Ψ

let ϕ be the angle between radius of Vector and tangent to the curve $r=f(\theta)$ at p

W.K.Tarantalan e mili

$$\Psi = \phi + \Theta$$

$$\Rightarrow$$
 tan $\Psi = \tan (\phi + \theta)$

$$\tan \Psi = \frac{\tan \phi + \tan \theta}{1 - \tan \phi + \tan \theta} \longrightarrow 0$$

also W.K.T The Slope of the tangent T

is
$$m = \tan \Psi = \frac{dy}{dx} \longrightarrow 2$$

tet $x = r \cos \theta$ and $y = r \sin \theta$ differentiate x and y w r t θ

$$\frac{dx}{d\theta} = \frac{dr}{d\theta} \cos \theta - r \sin \theta$$

$$\frac{dy}{d\theta} = \frac{dr}{d\theta} \quad Sin\theta + r \cos\theta$$

$$\Rightarrow \tan \Psi = \frac{dr/d\theta \ \text{Sin}\theta + r \cos \theta}{dr/d\theta \ \text{Cos}\theta - r \ \text{Sin}\theta}$$

$$= \frac{\frac{dr}{d\theta} \sin \theta}{\frac{dr}{d\theta} \cos \theta} + \frac{r \cos \theta}{\frac{dr}{d\theta} \cos \theta}$$

$$= \frac{1 - \frac{r \sin \theta}{d\theta}}{\frac{dr}{d\theta} \cos \theta}$$

$$\Rightarrow \tan \Psi = \tan \theta + r \frac{d\theta}{dr} / - r \frac{d\theta}{dr} \tan \theta$$

$$\frac{\tan\theta + \tan\phi}{1 - \tan\phi \tan\theta} = \frac{\tan\theta + r \frac{d\theta}{dr}}{1 - r \frac{d\theta}{dr} \tan\theta}$$

$$tan \phi = r \frac{d\theta}{dr}$$

$$\phi = \tan^{-1} r \frac{d\theta}{dr}$$

Interms of, Cot
$$\phi = \frac{1}{r} \frac{dr}{d\theta}$$

B. ANGLE BETWEEN TWO POLAR CURVES

Let $r = f_1(\theta)$, $r = f_2(\theta)$ be the given two polor curves having r the tangents T_1 and T_2 and making an angles of radius of vector ϕ_1 and ϕ_2 then $\frac{\theta}{O(0,0)}$ the angle between the

given two polar curves is the angle between there two tangent = $|\phi_2 - \phi_1|$

WITH USUAL NOTATION, PROVE THAT
$$\frac{1}{P^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta} \right)^2$$

Let \overrightarrow{OX} be the intial $r = f(\theta)$ line $r = f(\theta)$ be a polar curve at $P(r, \theta)$ and r

of vector

Let T be the tangent to

the curve $r = f(\theta)$. At P and M is M the foot of the L^{lur} of the pole χ_T O(0,0) having the perpendicular distance $OM = \beta$ from the ΔOPM We have OMP = 90.

$$\therefore \sin \phi = \frac{OM}{OP}$$

$$\Rightarrow$$
 Sin $\phi = P$

$$\Rightarrow$$
 $P = r \sin \phi$ \longrightarrow \bigcirc

Square on both Sides

$$\Rightarrow P^2 = n^2 \sin^2 \phi$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2 \sin^2 \emptyset}$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} \cos^2 \phi$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} \left(1 + \omega t^2 \phi \right)$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} \left[1 + \left(\frac{1}{r} \left(\frac{dr}{d\theta} \right)^2 \right) \right]$$

$$\Rightarrow \frac{1}{P^2} = \frac{1}{r^2} \left[1 + \frac{1}{r^2} \left(\frac{dr}{d\theta} \right)^2 \right]$$

$$\Rightarrow \frac{1}{\rho^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta} \right)^2$$

I. Find the angle between the radius vector and tangent for the following polar curves.

Given,

$$r = a(1 - \cos\theta) \longrightarrow 0$$

differentiate (1) w.r.t.0

$$\frac{dr}{d\theta} = \alpha(0 + \sin \theta)$$

$$\frac{dr}{d\theta} = a \sin \theta$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{0. \sin \theta}{r}$$

$$\frac{1}{r} \frac{dr}{d\theta} = \underbrace{\alpha \sin \theta}_{\alpha (1-\cos \theta)}$$

$$\Rightarrow$$
 Cot $\phi = \underline{Sin\theta}$
(1-Cose)

$$\Rightarrow \cot \phi = \frac{2\sin \theta/2 \cos \theta/2}{2\sin^2 \theta/2}$$

$$\Rightarrow$$
 $\cot \phi = \cot \theta_{2}$

When,
$$\Theta = \frac{\Pi}{3}$$

$$\phi = \frac{\pi/3}{2}$$

$$\phi = \frac{\pi}{6} = 30'$$

given

$$r = a.(1 + \cos\theta) \longrightarrow 0$$

$$\frac{dr}{d\theta} = \alpha (0 - \sin \theta)$$

$$\frac{dr}{d\theta} = \alpha \left(-\sin\theta\right)$$

$$\frac{1}{r}\frac{dr}{d\theta} = \frac{-a \sin \theta}{r}$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{-a \sin \theta}{a (1 + \cos \theta)}$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{-\sin\theta}{(1+\cos\theta)}$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{2 \sin^2 \theta/2 \cos^2 \theta/2}{3 \cos^2 \theta/2}$$

$$\Rightarrow$$
 cot $\phi = -\tan \Theta/2$

$$\Rightarrow$$
 Cot ϕ = Cot $(\pi/2 + \Theta/2)$

Given

differentiate (1) w.r. t. 0

$$\Rightarrow \frac{dr}{d\theta} = a \cos \theta$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{a \cos \theta}{x}$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{0.\cos\theta}{a(1+\sin\theta)}$$

$$\Rightarrow$$
 $\cot \phi = \underline{\cos \theta}$
 $1 + \sin \theta$

$$= \frac{\cos^2 \theta_2 - \sin^2 \theta_2}{\cos^2 \theta_2 + \sin^2 \theta_2 + 2\sin \theta_2 \cos \theta_2}$$

=
$$\frac{(\cos \theta/2 + \sin \theta/2)(\cos \theta/2 - \sin \theta/2)}{(\cos \theta/2 + \sin \theta/2)^2}$$

$$= \frac{\cos \theta/2 - \sin \theta/2}{\cos \theta/2 + \sin \theta/2}$$

$$= \frac{1 - \tan \theta/2}{1 + \sin \theta/2/\cos \theta/2}$$

$$= \frac{1 - \tan \theta/2}{1 + \tan \theta/2}$$

$$= \frac{\tan (\pi/4) - \tan (\theta/2)}{1 + \tan (\pi/4) \tan (\theta/2)}$$

$$\Rightarrow \cot \phi = \tan (\frac{\pi}{4} - \frac{\theta}{2})$$

$$\Rightarrow \cot \phi = \cot (\frac{\pi}{4} - \frac{\theta}{2})$$

$$\Rightarrow \phi = \pi - \pi + \theta$$

$$\Rightarrow \phi = \frac{\pi}{2} - \frac{\pi}{4} + \frac{\theta}{2}$$

$$\Rightarrow \phi = \frac{\pi}{4} + \frac{\theta}{2} //$$

II. Show that the following pairs of curves intersect each other orthogonally.

Given

$$r = a (1 + \cos \theta) \rightarrow 0$$

differentiate (1) w.r.t. 0

$$\frac{dr}{d\theta} = -a \sin \theta$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{-a \sin \theta}{r}$$

$$\Rightarrow$$
 cot $\phi_1 = \frac{-a\sin\theta}{a(1+\cos\theta)}$

$$\Rightarrow$$
 cot $\phi_1 = -\frac{\sin \theta}{1 + \cos \theta}$

$$\Rightarrow \cot \phi_1 = \frac{-3\sin \theta/2 \cos \theta/2}{3\cos^2 \theta/2}$$

$$\Rightarrow \cot \phi_1 = - \tan \theta_2$$

$$\cot \phi = \cot \left(\frac{\pi}{2} + \frac{\theta}{2} \right)$$

$$\therefore \phi_1 = \frac{\pi}{2} + \frac{\theta}{2}$$

Similarly differentiate 2 w.r.t. & 0SJC17 $\frac{dr}{d\theta} = b \sin \theta$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{b \sin \theta}{r}$$

$$\Rightarrow$$
 cot $\phi_2 = \frac{b \sin \theta}{b(1 - \cos \theta)}$

$$\Rightarrow$$
 Cot $\phi_2 = \frac{\sin \theta}{1 - \cos \theta}$

$$\Rightarrow \cot \phi_2 = \frac{2 \sin \theta_2 \cos \theta_2}{2 \sin^2 \theta_2}$$

$$\therefore \cot \phi_2 = \theta_2$$

$$|\phi_1 - \phi_2| = \left| \frac{\pi}{2} + \frac{\Theta}{2} - \frac{\Theta}{2} \right| = \frac{\pi}{2} /$$

:. the Given Curves are intersecting orthogo - nally.

(2)
$$r = a(1 + \sin \theta)$$
, $r = a(1 - \sin \theta)$
Given

 $r = a(1 + \sin \theta) \longrightarrow 0$

differentiate (1) $w.r.t.\theta$

$$\frac{dr}{d\theta} = a \cos \theta$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{a \cos \theta}{r}$$

$$\Rightarrow \cot \phi_1 = \frac{a \cos \theta}{a(1 + \sin \theta)}$$

$$\Rightarrow \cot \phi_1 = \frac{\cos \theta}{a(1 + \sin \theta)}$$

$$\Rightarrow \cot \phi_1 = \frac{\cos^2 \theta/2 - \sin^2 \theta/2}{\cos^2 \theta/2 + \sin^2 \theta/2} + 2\sin \theta/2 \cos \theta/2$$

$$= \frac{\cos^2 \theta/2 + \sin^2 \theta/2}{\cos^2 \theta/2 + \sin \theta/2}$$

$$= \frac{1 - \tan \theta/2}{1 + \tan \theta/2}$$

$$\therefore \cot \phi_1 = \tan \left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = \cot \left(\frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\theta}{2}\right)\right)$$

$$\Rightarrow \cot \phi_1 = -a \cos \theta$$
Similarly differentiate (2) $w.r.t.\theta$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{-a\cos\theta}{a(1-\sin\theta)}$$

$$\Rightarrow \cot \phi_2 = -\left[\frac{\cos^2 \theta/2 - \sin^2 \theta/2}{(\cos \theta/2 - \sin \theta/2)^2}\right]$$

$$\Rightarrow \cot \phi_2 = -\left[\frac{\cos \theta/2 + \sin \theta/2}{\cos \theta/2 - \sin \theta/2}\right]$$

$$= -\left[\frac{1 + \tan \theta/2}{1 - \tan \theta/2}\right]$$

$$\cot \phi_2 = \cot \left(\frac{\pi}{2} + \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right)$$

$$\therefore \phi_2 = \frac{\pi}{2} + \frac{\pi}{4} + \frac{\Theta}{2}$$

.. The Given curves are intersecting orthogonally

(3)
$$y^n = a^n(\cos n\theta)$$
, $r^n = b^n(\sin n\theta)$
Given

$$r^n = a^n (\cos n\theta) \rightarrow 0$$

differentiate (1) w r t 0

$$\Rightarrow n n^{n-1} \frac{dr}{d\theta} = -a^n (\sin n\theta)$$

$$\Rightarrow \frac{r^n}{r} \frac{dr}{d\theta} = -a^n \sin n\theta$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{-a^n \sin n\theta}{r^n}$$

and the second of the second of

$$\cot \phi_1 = \frac{-a^n \sin n\theta}{a^n \cos n\theta}$$

$$\cot \phi_1 = - \tan \theta$$

$$(ot \phi_1 = \cot \left(\frac{\pi}{2} + n \theta \right)$$

$$\phi_1 = \frac{\pi}{9} + n\theta$$

Similarly differentiate 2 w.r.t 0

$$\Rightarrow \frac{r^n}{r} \frac{dr}{d\theta} = b^n \cos n\theta$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{b^n \cos n\theta}{r^n}$$

$$\Rightarrow$$
 $\cot \phi_2 = \frac{b^n \cos n\theta}{r^n}$

$$\cot \phi_2 = \cot n\theta$$

$$\phi_2 = n\theta$$

$$| \phi_1 - \phi_2 | = | \frac{\pi}{2} + n\theta - n\theta | = \frac{\pi}{2} /$$

:. the Given curves are intesecting orthogonally

of curves.

Given :-

$$r: Sin\theta + Cos\theta \longrightarrow 0$$

$$r = \Im \sin\theta \longrightarrow \widehat{\mathbb{Q}}$$

$$\text{differentiate} \quad \text{equation} \quad \widehat{\mathbb{U}} \quad \text{w. r. t. } \theta$$

$$\widehat{\mathbb{U}} \Rightarrow \frac{dr}{d\theta} = \cos\theta - \sin\theta$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{\cos\theta - \sin\theta}{r}$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{\cos\theta - \sin\theta}{\sin\theta + \cos\theta}$$

$$= \frac{1 - \tan\theta}{1 + \tan\theta}$$

$$= \frac{\tan(\pi/4) - \tan\theta}{1 + \tan\theta}$$

$$\Rightarrow \cot\phi_1 = \cot(\pi/4 - \theta)$$

$$\Rightarrow \cot\phi_1 = \cot(\pi/4 - \pi/4 - \theta)$$

$$\Rightarrow \cot\phi_1 = \cot\phi_1$$

$$\Rightarrow \cot\phi_2 = \cot\theta$$

$$\Rightarrow \cot\phi_1 = \cot\phi_2$$

$$\Rightarrow \cot\phi_1 = \cot\phi_2$$

$$\Rightarrow \cot\phi_1 = \cot\phi_2$$

$$\Rightarrow \cot\phi_2 = \cot\phi$$

 $\Rightarrow \phi_2 = \theta$

$$\cdot \cdot \cdot | \phi_1 - \phi_2 | = \left| \frac{\pi}{2} - \frac{\pi}{4} + \Theta - \Theta \right|$$

$$\Rightarrow |\phi_1 - \phi_2| = \pi/4$$

The Given pairs of Curves are intersecting at $\frac{\pi}{4}$ [45]

(a)
$$r = a \log \theta$$
 and $r = a$
 $\log \theta$

Given

$$r = a \log \theta \longrightarrow 0$$

$$r = \frac{\alpha}{109\theta} \longrightarrow 2$$

differentiate equation 1) and 2 w.r.t. 0

$$0 \Rightarrow \frac{dr}{d\theta} = \alpha \cdot \left(\frac{1}{\theta}\right)$$

$$=$$
 $\frac{dr}{d\theta} = \frac{\alpha}{\theta}$

$$\frac{d\theta}{dr} = \frac{\theta}{\alpha}$$

$$\Rightarrow \gamma \frac{d\theta}{dr} = \gamma \frac{\theta}{\alpha}$$

=>
$$tan \phi_1 = \frac{(a log \theta) \theta}{a}$$

uily differentiate equation @ w.r.to

(2) =>
$$\frac{dr}{d\theta} \log \theta + \frac{r}{\theta} = 0$$

$$\Rightarrow$$
 loge $\frac{dr}{d\theta} = -\frac{r}{\theta} = 0$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = -\frac{1}{\theta \log \theta}$$

=>
$$r \frac{d\theta}{dr} = -\theta \log\theta$$

=>
$$tan p_2 = -\theta log \theta \longrightarrow (4)$$

$$tan (\phi_1 - \phi_2) = tan \phi_1 - tan \phi_2$$

$$1 + tan \phi_1 tan \phi_2$$

=>
$$tan(\phi_1 - \phi_2) = \theta \log\theta + \theta \log\theta$$

 $1 + (\theta \log\theta)(-\theta \log\theta)$

=>
$$\tan (\phi_1 - \phi_2)^2 \frac{2 \theta \log \theta}{1 - \theta^2 (\log \theta)^2} \longrightarrow 5$$

:. from equation (i) and (2) a log
$$\theta = \frac{a}{\log \theta}$$

$$\therefore \quad \textcircled{5} \Rightarrow \tan \left(\phi_1 - \phi_2 \right) = \underbrace{\frac{3e}{1 - e^2}}$$

$$|\phi_1 - \phi_2| = \tan^{-1} \left(\frac{2e}{1 - e^2} \right) = 2 \tan^{-1} e_{\parallel}$$

- .. The Given two curves or pair of curves are intersecting at a tan-le.
- 3 $r^2 \sin \theta = 4$ and $r^2 = 16 \sin 2\theta$ Given

$$r^2 Sin 2\theta = H \longrightarrow ① \leftarrow r^2 = H Sin 2\theta$$

$$r^2 = 16 Sin 2\theta \longrightarrow ②$$

- :. from equation ① and ② $\frac{4}{\sin 2\Theta} = 16 \sin 2\theta$
 - => 4 Sin2 20 = 1
 - \Rightarrow Sin²2 $\theta = \frac{1}{4}$
 - \Rightarrow Sin $2\theta = \frac{1}{4}$
 - => Sin 20 = 1
 - => 20 = Sin'(1/2)
 - => 2θ <u>π</u>
 - => θ = π 19

differentiate equation 1 and 2 w.r.t. 0

(a)SJCI

- $0 \Rightarrow 2r \frac{dr}{d\theta} \sin 2\theta + r^2 \cos (2\theta) \cdot 2 = 0$
 - =) $r \underline{dr}$. $sin 2\theta + r^2 cos 2\theta = 0$
 - $= \frac{1}{d\theta} \cdot \frac{dr}{d\theta} \cdot \frac{\sin 2\theta}{\sin 2\theta} = -r^2 \cos 2\theta$

=)
$$r \frac{dr}{d\theta} = -\frac{r^2 \cos 2\theta}{\sin \theta}$$

=)
$$\frac{1}{r} \frac{dr}{d\theta} = -\cot 2\theta$$

(2) =>
$$3r \cdot \frac{dr}{d\theta} = 16(\cos \theta)(3)$$

=>
$$r \frac{dr}{d\theta} = 16 \cos 2\theta$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{16 \cos 2\theta}{r^2}$$

$$\Rightarrow$$
 cot $\phi_2 = \frac{16 \cos 2\theta}{16 \sin 2\theta}$

$$| \phi_1 - \phi_2 | = |-2\theta - 2\theta|_6 = 4\theta$$

$$|\phi_1 - \phi_2| = 4(\frac{\pi}{12}) = \frac{\pi}{3}$$

:. The Give pair of curves are intersecting at $\frac{\pi}{3}$

$$(4)$$
 $r = a(1-cos\theta)$ and $r = aacos\theta$
Given,

$$r = \alpha (1 - \cos \theta) \longrightarrow 0$$

differentiate equation (1) and (2) w.r.t.0

$$\frac{dr}{d\theta} = a \sin \theta$$

=)
$$\frac{1}{r} \frac{dr}{d\theta} = \frac{\alpha \sin \theta}{r}$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{a \sin \theta}{a (1 - \cos \theta)}$$

=)
$$\frac{1}{r} \frac{dr}{d\theta} = \frac{\sin \theta}{(1 - \cos \theta)}$$

$$=) \cot \phi_1 = \frac{3 \sin \theta}{(1 - \cos \theta)}$$

$$=) \cot \phi_1 = \frac{3 \sin \theta}{2 \sin^2 \theta/2}$$

=) Cot
$$\phi_1 = \frac{\cos \theta/2}{\sin \theta/2}$$

=>
$$\cot \phi_1 = \cot \theta_2$$
 $\therefore \phi_1 = \theta_2$

$$\frac{dr}{d\theta} = -2a \sin \theta$$

=>
$$\frac{1}{r} \frac{dr}{d\theta} = -\frac{2aSin\theta}{2a \cos\theta}$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = -tan\theta$$

=>
$$\cot \phi_2 = \cot (\pi/2 + \theta)$$

$$\phi_2 = \frac{\pi}{2} + \Theta$$

$$|\phi_1 - \phi_2| = \left| \frac{\Theta}{2} - \frac{\pi}{2} - \Theta \right|$$

$$|\phi_1 - \phi_2| = \left|\frac{\pi}{2} + \frac{\theta}{2}\right|$$

From (1) and (2)

=)
$$(1 - (0 \times \theta)) = 3 (0 \times \theta)$$

=) $3 (0 \times \theta) = 1$
=) $(0 \times \theta) = 1/3$
=) $(0 \times \theta) = 1/3$

$$| \phi_1 - \phi_2 | = | \pi /_2 + 1 /_2 \cos^{-1}(1/3) |$$

.. The Given two curves or pair of curves are intersecting at | 11/2 + 1/2 cos-1 (1/3)

(5)
$$r = \underline{a}$$
 and $r = \underline{b}$
 $1 + \cos \theta$ $1 - \cos \theta$

Given,

$$r = \frac{\alpha}{1 + \cos \theta}$$
 or $r(1 + \cos \theta) = \alpha \rightarrow 0$

① d w. r t
$$\theta$$

(1+(ost)) $\frac{dr}{d\theta}$ - r $\sin\theta$ = 0

=) $\frac{1}{r} \frac{dr}{d\theta}$ = $\frac{\sin\theta}{1+(os\theta)}$
=) $\cot \phi_1 = \frac{2 \sin\theta/2(os\theta/2)}{a(os^2 \theta/2)}$
=) $\cot \phi_1 = \tan\theta/2$
=) $\cot \phi_1 = \cot (\pi/2 - \theta/2)$

Similarly differentiate ② w. r t. θ
 $r = \frac{b}{1-(os\theta)}$ or $r(1-cos\theta) = b \rightarrow ②$

=) $\frac{1}{r} \frac{dr}{d\theta} = \frac{-\sin\theta}{1-cos\theta} = -\cot\theta/2$
=) $\cot \phi_2 = -\frac{\pi}{2}$

∴ The Given pair of curves are intersect ing at the angle of $\frac{\pi}{2}$ or q_0 .

TV. Find the pedal equation for the Following polar curves.

Let,

$$r = \alpha e^{\theta \cot \alpha} \longrightarrow 0$$

1 equation differentiate w.r. t. 0

$$\Rightarrow \frac{dr}{d\theta} = (\alpha \cot \alpha) e^{\theta \cot \alpha}$$

=>
$$\frac{1}{r} \frac{dr}{d\theta} = \frac{(a \cot \alpha) e^{\theta \cot \alpha}}{r}$$

=>
$$\cot \phi = \frac{(a \cot \alpha) e^{\theta \cot \alpha}}{a e^{\theta \cot \alpha}}$$

Given.

$$r^n = \alpha^n \cos n\Theta \longrightarrow 0$$

$$\Rightarrow \frac{r^n}{r} \frac{dr}{d\theta} = -a^n \sin n\theta$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = -\frac{\alpha^n Sin^n\theta}{r^n}$$

=>
$$\cot \phi = \frac{-a^n \sin n\theta}{a^n \cos n\theta}$$

=> cot
$$\phi$$
 = - tanne

$$\frac{1}{P^2} = \frac{1}{r^2} \left(1 + \omega t^2 \phi \right)$$

$$\Rightarrow \frac{1}{p^2} : \frac{1}{r^2} \left(1 + \tan^2 n\theta \right)$$

$$\Rightarrow \frac{1}{P^2} = \frac{1}{r^2} Sec^2 n\theta$$

$$\Rightarrow \frac{1}{\rho^2} = \frac{1}{r^2 \cos^2 n \theta}$$

$$\Rightarrow$$
 $p^2 = \gamma^2 \cos^2 n\theta$

$$\Rightarrow b = \lambda \left(\frac{\sigma_{\mu}}{\lambda_{\mu}} \right) \quad (\therefore 0)$$

$$\Rightarrow p = \frac{r^n + 1}{\alpha^n}$$

$$\Rightarrow \sigma_n b = \lambda_{n+1}$$

$$\frac{30}{r} = 1 + \cos\theta$$

$$\frac{2a}{r} = 1 + \cos \theta$$
 or $2a = r(1 + \cos \theta) \longrightarrow 0$

=> (1+ cose)
$$\frac{dr}{d\theta}$$
 - $r Sin\theta = 0$

$$= \frac{1}{r} \frac{dr}{d\theta} = \frac{\sin \theta}{1 + \cos \theta}$$

=>
$$\cot \phi = \frac{2 \sin \theta/2 \cos \theta/2}{2 \cos^2 \theta/2}$$

$$\frac{1}{P^2} = \frac{1}{1} \left(1 + \cot^2 \phi \right)$$

$$\frac{1}{p^{2}} = \frac{1}{r^{2}} (1 + \cot^{2} \theta)$$

$$= \frac{1}{p^{2}} = \frac{1}{r^{2}} (1 + \tan^{2} \theta/2)$$

=>
$$\frac{1}{p^2} = \frac{1}{r^2} (Sec^2 \Theta/2)$$

$$= \frac{1}{p^2} = \frac{1}{r^2 \cos^2 \theta/2}$$

$$\Rightarrow p^2 = r^2 \cos^2 \theta/2$$

$$\Rightarrow p^2 = \gamma^2 \left(\frac{2}{1 + \cos \theta} \right)$$

$$\Rightarrow 1 + \cot^{2}\phi = \frac{3}{2}a^{2m}$$

$$\therefore \text{ the pedal equation}$$

$$\frac{1}{p^{2}} = \frac{1}{r^{2}} \cdot (1 + \cot^{2}\phi)$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{1}{r^{2}} \cdot \frac{2}{2}a^{2m}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{3}{r^{2}} \cdot \frac{2}{r^{2m+2}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{3}{r^{2m+2}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{3}{r^{2m+2}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{3}{r^{2m+2}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{3}{r^{2m+2}}$$

$$\Rightarrow \frac{1}{r} = 1 + e\cos\theta$$

$$\Rightarrow \frac{1}{r} = 1 + e\cos\theta \Rightarrow 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(0 - e\sin\theta) = 0$$

$$\Rightarrow 1 + e\cos\theta \Rightarrow r + r(\cos\theta) \Rightarrow r + r$$

$$= \frac{1 + 3e \cos \theta + e^{2}(1)}{(1 + e \cos \theta)^{2}}$$

$$= \frac{1 + 3e \cos \theta + e^{2}}{(1 + e \cos \theta)^{2}}$$

$$\Rightarrow 1 + \cot^{2} \phi = \frac{1 + e^{2} + 3\left(\frac{1}{r} - 1\right)}{\left(\frac{1}{r}\right)^{2}}$$

$$= \frac{1 + e^{2} + 3l - 2}{r}$$

$$= \frac{e^{2} + 3l - 1}{r}$$

$$= \frac{e^{2} + 3l - 1}{r}$$

$$= \frac{1 + \cot^{2} \phi}{r} = \frac{r^{2}(e^{2} + 3l/r - 1)}{r}$$

$$\therefore \text{ the pedal equation}$$

$$= \frac{1}{p^{2}} = \frac{1}{r^{2}} \cdot r^{2} \left(\frac{e^{2} + 3l/r - 1}{l^{2}}\right)$$

$$= \frac{1}{p^{2}} = \frac{e^{2} + 3l/r - 1}{l^{2}}$$

$$= \frac{1}{p^{2}} = \frac{e^{2} + 3l/r - 1}{l^{2}}$$

Radius of Curvature

Generally the Curvature of any curve Can be denoted by 'k' and the reciprocal of the curvature will be called as the radius of wrvature and it will be denoted

Note: -

1. the radius of Curvature can be evaluated in the Cartisian form by the following formula.

$$P = \frac{(1 + y_1^2)^{3/2}}{y_2}$$
, $y_2 \neq 0$

where $y_1 = \frac{dy}{dx}$, $y_2 = \frac{d^2y}{dx^2}$ at any point P

In other way
$$p = \frac{(1+\chi_1^2)^{3/2}}{\chi_2}, \chi_2 \neq 0$$

where $x_1 = \frac{dx}{dy}$, $x_2 = \frac{d^2x}{dy^2}$ at any point P

2. The radius of curvature for the polar curve can be evaluated as,

P = rdr, where f (p,r,c) is the pedal equation.

V

1. Find the radius of curvature of the curve $y = a \log (\sec(x/a))$ at any point

Given,

y = a log (Sec (x/a))

الأم الملا فيوامي وا

differentiate (1) w. r.t. x

(1) => $\frac{dy}{dx} = \alpha \cdot \frac{1}{Sec} (x/a) Sec(x/a) tan(x/a) \cdot 1/a$

$$\Rightarrow \frac{dy}{dx} = \tan(x/a) = y_1 \longrightarrow 2$$

differentiate 2 w.r.t.x

∴ w. k. t

$$\beta = \frac{(1+y_1^2)^{3/2}}{y^2}$$

$$\Rightarrow \beta = \frac{\alpha \left(\operatorname{Sec}^{2}(x/\alpha) \right)^{3/2}}{\operatorname{Sec}^{2}(x/\alpha)}$$

$$\Rightarrow \beta : \underline{\alpha \operatorname{Sec}^{3}(x/\alpha)}$$

2. Find the radius of the curvature of the curve $x^3 + y^3 = 3axy$ at the point P(3a/2, 3a/2).

given,

$$x^3 + y^3 = 3axy \longrightarrow 0$$

differentiate w r t x

=>
$$(y^2 - ax)y_1 + (x^2 - ay) = 0$$

$$= y_1 = \frac{\alpha y - \chi^2}{y^2 - \alpha \chi} \longrightarrow 2$$

$$\frac{(y_1)_p = \alpha(\frac{3\alpha}{2}) - (\frac{3\alpha}{2})^2}{(\frac{3\alpha}{2})^2 - \alpha(\frac{3\alpha}{2})} = -(\frac{3\alpha}{2})^2 - \alpha(\frac{3\alpha}{2})} = -1$$

differentiate 2 w.r.t x

(2) =>
$$y_2 = \frac{d^2y}{dx^2} = \frac{(y^2 - \alpha x)(\alpha y_1 - \alpha x) - (\alpha y_2 - x^2)(\alpha y_3 - \alpha)}{(y^2 - \alpha x)^2}$$

$$(y_2)_p = \left[\left(\frac{3q}{2} \right)^2 - 4 \left(\frac{3q}{2} \right) \right] \alpha(-1) - 2 \left(\frac{3q}{2} \right) - 4 \left(\frac{3q}{2} \right) - \left(\frac{3q}{2} \right)^2$$

$$\left[3 \left(\frac{3q}{2} \right) (-1) - \alpha \right]$$

$$\left(\frac{3\alpha}{2}\right)^2 - \alpha \left(\frac{3\alpha}{2}\right)^2$$

$$= \frac{3q^{2}}{4} \left(-4q \right) - \left(-\frac{3q^{2}}{4} \right) \left(-4q \right) - \left(-\frac{3q^{2}}{4} \right) \left(-4q \right)$$

=>
$$y_2 = -3a^3 - 3a^3$$
 $\frac{9a^4}{16}$

$$\Rightarrow y_2 = -\frac{6a^3 \times 16}{9a^4} = -\frac{32}{3a}$$

$$\therefore \beta = \left| \frac{(1+y_1^2)^{3/2}}{y_2} \right| = \left| \frac{(1+(-1)^2)^{3/2}}{-32/3a} \right|$$

=>
$$\rho = \frac{3^{3/2}}{33/3a}$$

$$= \frac{3a}{8\sqrt{2}}$$

3) Find the radius of curvature of the curve $a^2y = x^2 - a^2$ at the point where the curve meets at x-axis

DSJCIT

Given curve $a^2y = \chi^2 - a^2$ and the curve meet the χ axis at the point P' and its Y coordinate becomes Zero.

: the required point
$$P(a, 0)$$

differentiate equation $w r t x$
 $q^2y = x^2 - a^2 \longrightarrow 0$

$$\Rightarrow a' = \frac{a_s}{3x} \longrightarrow 3$$

$$\therefore (y_1)_p = \frac{a(a)}{a^2} = \frac{a}{a} \longrightarrow 3$$

differentiate 3 w. rt x

$$(y_2)_p = \frac{2}{a^2} \neq 0$$

$$\beta = \frac{(1-y_1^2)^{3/2}}{y_2}$$

$$\beta = (1 + (3/a)^2)^{3/2}$$

=>
$$\rho = \frac{(1 + 4/\alpha^2)^{3/2}}{3/\alpha^3}$$

$$\Rightarrow \beta = \frac{\alpha^2 \left(\frac{\alpha^2 + 4}{\alpha^2}\right)^{3/2}}{3}$$

$$\Rightarrow \beta = \frac{\alpha^2 (\alpha^2 + 4)^{3/2}}{\alpha^3}$$

$$\Rightarrow \beta = \frac{(\alpha^2 + 4)^{3/2}}{3\alpha}$$

(4). Find the radius of the curvature of the curve
$$a^2y = x^3 - a^3$$
 and meets at x axis. Given.

$$a_3 A = x_3 - a_3 \longrightarrow 0$$

differentiate w T t x

$$0 \Rightarrow \alpha^{2}y_{1} = 3x^{2} \rightarrow 0$$
or
$$y_{1} = \underbrace{3x^{2}}_{\alpha^{2}} \rightarrow 0$$

$$(y_1)_p = \frac{3(a^2)}{a^2} = 3$$

differentiate 2 w. rt x

$$(y_2)_p = \frac{6(\alpha^2)}{\alpha^3} = \frac{6}{\alpha}$$

$$\Rightarrow \beta = \left| \frac{\left(1 + y_1^2\right)^{3/2}}{y_2} \right|$$

$$\Rightarrow \beta = \frac{(1+3^2)^{3/2}}{6/a}$$

$$\Rightarrow \beta = \frac{(1+9)^{3/2}}{6/a}$$

$$\Rightarrow \beta = \frac{\alpha \cdot 10^{3/2}}{6}$$

=>
$$\beta = \frac{0.10.10^{1/2}}{6}$$

=> $\beta = \frac{5\sqrt{10.0}}{3}$

(5) Find the radius of the curvature of the curve $x^2y = a(x^2 + y^2)$ at Point P(-2a, 2a) Given,

$$x^2y = a(x^2 + y^2) \longrightarrow 0$$

differentiate 0 w. r t y

(i) =>
$$x^2(1) + y ax \frac{dx}{dy} = a \left(ax \frac{dx}{dy} + ay\right)$$

$$\Rightarrow x_1 = \frac{3\alpha y - x^2}{3x(y-\alpha)} = \frac{3\alpha y - x^2}{3xy - 3\alpha x}$$

$$\frac{3(-3a)(3a-a)}{3(3a)-(-3a)^2}$$

differentiate (2) w + t y

(2) =>
$$x_2 = \frac{dy^2}{dy^2} = \frac{-(3\alpha y - x^2)(3x + xx, y - 3\alpha x)}{(3x^2 - x^2)(3x + xx, y - 3\alpha x)}$$

$$(x_2)_{p} = \frac{[-8\alpha^2 + 4\alpha^2][3\alpha - 0] - 0}{[-4\alpha(\alpha)]^2}$$

$$= 3 \quad x_2 = -\frac{8\alpha^3}{16\alpha^4}$$

$$\Rightarrow \chi_2 = -\frac{1}{2\alpha} \neq 0$$

$$\frac{1}{2} \cdot \frac{1}{2} = \frac{(1+\chi_1^2)^{3/2}}{\chi_2} = \frac{(1+0)^{3/2}}{-1/2\alpha} = \frac{3\alpha}{1}$$

6) Find the radius of the curvature of the Polar curve r= a(1+coso) $T = \alpha (1 + \cos \theta) \longrightarrow 0$ differentiate given,

$$\tau = \alpha (1 + \cos \theta) \longrightarrow 0$$

differentiate (1) w r t 0

$$\frac{1}{d\theta} = \alpha(0-Sin\theta) = -\alpha Sin\theta$$

=>
$$\frac{1}{r} \frac{dr}{d\theta} = \frac{-a \sin \theta}{a(1+\cos \theta)}$$

$$= \int \cot \phi = -\frac{2 \sin \theta_2 \cos \theta_2}{2 \cos^2 \theta_2}$$

w.K.T the pedal equation

$$\frac{1}{P^2} = \frac{1}{r^2} \left(1 + \omega f_3 \phi \right)$$

$$= \frac{1}{P^2} = \frac{1}{1} (1 + \tan^2 \frac{1}{2})$$

$$\Rightarrow \frac{1}{P^2} = \frac{1}{r^2} Sec_2 \Theta/2$$

$$\Rightarrow \frac{b_s}{l} = \frac{\lambda_s \cos_s \Theta/5}{l}$$

=>
$$p^2 = r^2 \cos^2 \theta / 2$$

$$\Rightarrow b_3 = \frac{3}{L_3} \left(\frac{\alpha}{3} \right)$$

differentiate 2 wrt F

$$\Rightarrow \frac{dr}{dP} = \frac{4ap}{3r^2}$$

$$= \frac{db}{dx} = \frac{3x_5}{4ab}$$

$$\frac{db}{dt} = \frac{3x}{4\sigma b}$$

$$\Rightarrow \beta^2 = \frac{16\alpha^2}{9} \cdot \frac{1}{r^2} \left(\frac{7^3}{3\alpha} \right)$$

$$\Rightarrow \quad \beta^2 = \left(\frac{8a}{9}\right) r$$

Thow that for the curve
$$\tau(1-\cos\theta) = \partial a$$
 or $\frac{\partial a}{r} = (1-\cos\theta)$, and ρ^2 varies as τ^3 [$\rho^2 < \tau^3$]

given,

$$\gamma (1-605\theta) = 20 \longrightarrow 2$$

differentiate (1) w. r t 0

(i)
$$\Rightarrow$$
 $(1-\cos\theta)\frac{d\sigma}{d\theta} + r(0+\sin\theta) = 0$

$$\theta \sin 2x - \frac{1}{2} \int (\theta \cos x) - 1 \int (\theta \cos x) dx$$

$$= \frac{1}{r} \frac{dr}{d\theta} = \frac{-\sin\theta}{1-\cos\theta}$$

=>
$$\cot \phi = -\frac{2\sin \theta}{2\cos \theta}$$

$$\Rightarrow$$
 $\omega t \phi = -\cot(\theta/2)$

$$\frac{1}{P^2} = \frac{1}{1} \left(1 + \cot_5 \phi \right)$$

$$\Rightarrow \frac{1}{\rho^2} = \frac{1}{7^2} \left(1 + \omega t^2 \Theta /_2 \right)$$

$$\Rightarrow \frac{1}{p^2} = \frac{\pi^2}{1} \left(\cos e c^2 \Theta / 2 \right)$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2 \sin^2 \theta/2}$$

$$= \int b_3 = \lambda_5 \left(\frac{g}{1 - \cos \theta} \right)$$

$$\Rightarrow b_s = \frac{3}{k_s} \left(\frac{30}{30} \right)$$

$$=$$
 $p^2 = ar \longrightarrow (2)$

$$\frac{1}{2} \left(\frac{3}{8} \right)$$
=> $p^2 = ar \longrightarrow 2$
differentiate ② w. r.t.p
$$2 \Rightarrow ap = a \frac{dr}{dp}$$

$$\Rightarrow \beta^2 = \underbrace{\mu r^2 p^2}_{Q^2}$$

$$\Rightarrow \qquad \rho^2 = \frac{\mu r^2}{\alpha^2} (\alpha r)$$

=>
$$\beta^2 = \left(\frac{4}{\alpha}\right)\gamma^3$$

(8) For the Cardiant, r=a (1-coso), show that 12 is Constant

Given,

$$\gamma = \alpha(1 - (080) \rightarrow 0)$$

differentiate (1) w.rt 0

$$\frac{dr}{d\theta}$$
 = Sin θ . Q

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{\alpha \, s \sin \theta \cdot a}{\alpha \cdot a \, s \sin^2 \theta / 2}$$

$$\frac{\lambda}{1} \frac{d\theta}{da} = cof\theta^{\mu}$$

$$\phi = \theta/a$$

$$P = g \sin(\theta/a)$$

$$P^2 = \gamma^2 Sin^2 (\theta/2)$$

$$b_s = \lambda_s \left(\frac{3}{1 - \cos\theta} \right)$$

=>
$$b_3 = \frac{3}{2} \left(\frac{a}{\lambda} \right)$$

@SJCIT

$$\frac{3r^2}{2a} \frac{dr}{dp}$$

$$\frac{dp}{dp} = \frac{3p}{3p}$$

$$\Rightarrow \beta^2 = \frac{16a}{9x^2} \left(\frac{x^3}{3a} \right)$$

$$\Rightarrow \frac{9^2}{r} = \frac{8a}{q}$$

$$\theta = \sqrt{\tau^2 - \alpha^2} - \cos^{-1}(\frac{\alpha}{\tau})$$
 at any point on it

given,

$$\Theta = \sqrt{\tau^2 \cdot \alpha^2} - \cos^{-1}\left(\frac{\alpha}{\tau}\right) \longrightarrow 0$$

differentiate 1 w.r.t.r

$$= \frac{dr}{d\theta} = \frac{\alpha \sqrt{\lambda_5 - \alpha_5}}{L} + \frac{1}{1 - \alpha_5 / \lambda_5} \quad \alpha \left(\frac{\lambda_5}{-1} \right)$$

$$= \frac{\gamma}{\alpha \sqrt{\gamma^2 - \alpha^2}} - \frac{\alpha \tau}{\sqrt{\gamma^2 - \alpha^2}} \left(\frac{1}{\gamma^2}\right)$$

$$= \frac{\tau}{\alpha \sqrt{\tau^2 - \alpha^2}} - \frac{\alpha}{\sqrt{\tau^2 - \alpha^2}}$$

$$\Rightarrow \frac{d\theta}{d\gamma} = \frac{1}{\sqrt{\gamma^2 - \alpha^2}} \left[\frac{\gamma}{\alpha} - \frac{\alpha}{\gamma} \right]$$

$$= \frac{1}{\sqrt{3^2 - \alpha^2}} \left(\frac{3^2 - \alpha^2}{\alpha^2} \right)$$

$$= \frac{\sqrt{\lambda_3 - \sigma_3}}{1} \qquad \sqrt{\lambda_3 - \sigma_3} \qquad \sqrt{\lambda_3 - \sigma_5}$$

$$\frac{d\theta}{d\gamma} = \frac{\sqrt{\gamma^2 - \alpha^2}}{\alpha \gamma}$$

$$\Rightarrow \frac{d\theta}{d\theta} = \frac{Qx}{\sqrt{x^2 - Q^2}}$$

$$= \int \frac{\lambda}{l} \frac{d\theta}{dx} = \frac{\sqrt{\lambda_3 - \sigma_3}}{\sigma}$$

$$\Rightarrow$$
 cot $\phi = \frac{\alpha}{\sqrt{r^2 - \alpha^2}}$

=> cot
$$\phi = \frac{\lambda_3 - \alpha_3}{\sigma_3}$$

$$\Rightarrow 1 + \cot_5 \phi = \frac{\lambda_5 - \sigma_5}{1 + \sigma_5} = \frac{\lambda_5 - \sigma_5}{\lambda_5 - \sigma_5 + \sigma_5} = \frac{\lambda_5 - \sigma_5}{\lambda_5}$$

.. the pedal equation

$$\frac{1}{p^2} = \frac{1}{\gamma^2} \left(1 + \cot^2 \phi \right) = \frac{1}{\gamma^2} \frac{\gamma^2}{(\gamma^2 - \alpha^2)}$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{\chi^2 - \alpha^2}$$

$$\Rightarrow$$
 $p^2 = \gamma^2 - \alpha^2 \longrightarrow 2$

$$\Rightarrow \frac{1}{p^{2}} = \frac{1}{\gamma^{2} - \alpha^{2}}$$

$$\Rightarrow p^{2} = \gamma^{2} - \alpha^{2} \longrightarrow 2$$
differentiate (a) w.r.t.p
$$\Rightarrow p^{2} = p^{2} = p^{2} - \alpha^{2} \longrightarrow 2$$

$$\Rightarrow \beta = \sqrt{3^2 - \alpha^2}$$

$$\Rightarrow \beta = \sqrt{y^2 - \alpha^2}$$

(6) Find the radius of curvature
$$x^n = a^n (sinn \theta)$$
 Given,

$$\gamma^n = \alpha^n (Sinn\theta) \longrightarrow 0$$

$$n r^{n-1} \frac{dr}{d\theta} = \alpha^n (\omega s n \theta)$$

$$\frac{g}{a} \frac{dr}{d\theta} = \frac{a^n \omega s n \theta}{a}$$

$$\frac{1}{\delta} \frac{ds}{d\theta} = \frac{\alpha^n \omega sn\theta}{\alpha^n sinn\theta}$$

$$\frac{1}{P^2} = \frac{1}{7^2} \left(1 + \cot^2 \phi \right)$$

$$\frac{1}{P^2} = \frac{\cos ec^2 n\theta}{\gamma^2}$$

$$\frac{1}{p^2} = \frac{\cos ec^2 n\theta}{\gamma^2}$$

$$= \frac{1}{p^2} = \frac{1}{\gamma^2 \sin^2 n\theta}$$

$$= \frac{1}{p^2} = \frac{1}{\gamma^2 \sin^2 n\theta}$$

$$\Rightarrow p^2 = \gamma^2 \sin^2 n\theta$$

$$\Rightarrow p^2 = \sqrt[3]{\frac{\gamma^n}{\alpha^n}} = \frac{\gamma^{n+1}}{\alpha^n}$$

$$\Rightarrow \alpha^n p = \gamma^{n+1} \longrightarrow 2$$

differentiate 2 w r t p

$$\Rightarrow r^n \frac{dr}{dp} = \frac{\alpha^n}{n+1}$$

$$= 7 \cdot r^{n-1} \frac{dr}{dp} = \frac{\alpha^n}{n+1}$$

$$\Rightarrow \gamma \frac{dr}{dP} = \left(\frac{\alpha^n}{n+1}\right) \cdot \left(\frac{1}{\gamma^{n-1}}\right)$$

$$= \lambda b = \left(\frac{\omega + 1}{\sigma_{\omega}}\right) \left(\frac{\lambda_{\omega - 1}}{1}\right)$$

$$\Rightarrow \beta \ll \frac{1}{\tau^{m-1}}$$

(ii) Find the radius of Curvature $r^n = a^n$ (wsn θ) Given,

$$\chi_{\omega} = \sigma_{\omega} \ (\omega sub) \longrightarrow 0$$

differentiate 1 w.r.tr

(1) =>
$$m r^{m-1} \frac{dr}{d\theta} = -\alpha^m \cdot m \sin^m \theta$$

$$\frac{1}{r} \frac{3^n}{r} \frac{dr}{d\theta} = -\frac{a^n \sin n\theta}{a^n \cos n\theta}$$

$$\frac{1}{r} \frac{dr}{d\theta} = -\frac{a^m sinn\theta}{a^m \omega sn\theta}$$

$$\cot \phi = \cot (\pi / 2 + n \theta)$$

$$\phi = \frac{\pi}{2} + n\theta$$

=)
$$p = r \sin (\pi/2 + n\theta)$$

$$\Rightarrow P = \gamma \left(\frac{\gamma \eta}{\alpha \eta}\right)$$

$$\Rightarrow p = \frac{r^{n+1}}{a^n}$$

$$\Rightarrow a^n p = r^{n+1} \longrightarrow \otimes$$

Then differentiate
$$w r t P$$

$$a^{n} = (n+1) r^{n} \frac{dr}{dP}$$

$$\frac{a^{n}}{(n+1)} \left(\frac{1}{r^{n-1}}\right) = P$$

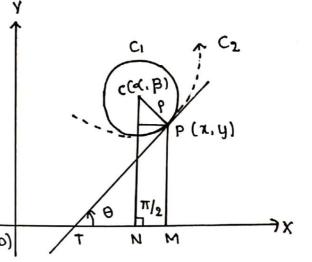
$$Q_{\mu} = (\mu+1) \lambda_{\mu} \frac{q\lambda}{dt}$$

$$(\frac{\alpha_n}{\alpha_{n-1}})$$
 $(\frac{1}{\alpha_{n-1}}) = \beta$

The <u>Centre</u> <u>of Curvature</u>, <u>Invaluates</u> <u>and</u> <u>Evaluates</u>

Let C, and C2 be the

two Smooth curves passing


through the Same point

P(x,y) the Centre of the

Curve C1 is C(x,B)

Called as the Centre

of Curvature, and it's olo,o)

radius 9 is called circle Curvature the Curve C_2 is called as the evaluate of the invaluate C_1 . The evaluate of an invaluate can be derived by the locus of the centre of the Curvature C(4, B).

The Centre of Curvature $C(\mathcal{L}, \mathcal{B})$ can be evaluated by using the following formulas $\mathcal{L} = \chi - P \sin \Psi$

=>
$$d = \frac{x - y_1(1 + y_1^2)}{y_2}$$
, $B = \frac{y + (1 + y_1^2)}{y_2}$

where,
$$y_1 = \frac{dy}{dx}$$
, $y_2 = \frac{dy^2}{dx^2}$

Vip Show that the evaluate of parabola,
$$y^2 : 4 ax$$
 is $37 ay^2 = 4 (x - 3a)^3$

Given.

 $y^2 : 4 ax \rightarrow 0$
 $\Rightarrow y = 3a^{1/2} x^{1/2}$

differentiate 0 w. r. t. x
 $0 \Rightarrow 3y \frac{dy}{dx} = 4a$
 $\Rightarrow y \frac{dy}{dx} = 3a$
 $\Rightarrow \frac{dy}{dx} = y_1 = \frac{3a}{y} \rightarrow 0$

differentiate 0 w. r. t. x
 $0 \Rightarrow \frac{d^2y}{dx} = y_2 = \frac{y(a)}{y^2} \frac{3ay}{y^2}$
 $\Rightarrow y_2 = -\frac{3a(3a/y)}{y^2}$
 $\Rightarrow y_2 = -\frac{4a^2}{y^3}$
 $\Rightarrow y_2 = -\frac{4a^2}{y^3}$
 $\Rightarrow y_2 = -\frac{4a^3}{3a^{3/2}} x^{3/2}$

=> $y_2 = \frac{-\alpha 1/2}{3x^{3/2}}$

$$\begin{array}{l}
\vdots \quad y_{1} = \frac{3\alpha}{3\alpha^{1/3}} \chi^{1/3} \\
\Rightarrow \quad y_{1} = \frac{\alpha^{1} x^{1/2}}{x^{1/2}} \\
\vdots \quad w. \quad k. \quad T \\
d = \frac{x_{1} - y_{1}(1 + y_{1}^{2})}{y_{2}} \\
\Rightarrow \quad d = \frac{x_{1} - y_{1}(1 + y_{1}^{2})}{y_{2}} \\
\Rightarrow \quad d = \frac{x_{1} - y_{1}(1 + y_{1}^{2})}{\frac{\alpha^{1/2}}{3x^{3/2}}} \left(\frac{x + \alpha}{x}\right) \\
-\frac{\alpha^{1/2}}{3x^{3/2}} \left(\frac{x + \alpha}{x}\right) \\
\Rightarrow \quad d = \frac{x_{1} + 3\alpha}{x^{1/2}} \left(\frac{x + \alpha}{x}\right) \\
\Rightarrow \quad d = \frac{x_{1} + 3\alpha}{x^{1/2}} \\
\Rightarrow \quad d = \frac{x_{1} + 3\alpha}{x^{1/2}$$

$$\Rightarrow \beta = 3\alpha^{1/2} x^{1/2} - \frac{3x^{3/2}}{\alpha^{1/2}} \left(\frac{x+\alpha}{x} \right)$$

$$= > \beta = 3\alpha^{1/2} x^{1/2} - \frac{3x^{1/2}}{\alpha^{1/2}} \left(\frac{x+\alpha}{x} \right)$$

$$= > \beta = \frac{1}{\alpha^{1/2}} \left| \frac{3\alpha x^{1/2}}{\alpha^{1/2}} - \frac{3x^{3/2}}{\alpha^{1/2}} - \frac{3\alpha x^{3/2}}{\alpha^{1/2}} \right|$$

$$= > \beta = \frac{1}{\alpha^{1/2}} \left| \frac{3\alpha x^{1/2}}{\alpha^{1/2}} - \frac{3x^{3/2}}{\alpha^{1/2}} - \frac{3\alpha x^{3/2}}{\alpha^{1/2}} \right|$$

$$= > \beta = \frac{1}{\alpha^{1/2}} \left| \frac{3\alpha x^{1/2}}{\alpha^{1/2}} - \frac{3\alpha x^{3/2}}{\alpha^{1/2}} - \frac{3\alpha x^{3/2}}{\alpha^{1/2}} \right|$$

$$= > \alpha x^{3/2} = \beta \alpha^{1/2}$$

$$= > \alpha x^{3/2} = \beta \alpha^{1/2}$$

$$= > \alpha x^{3/2} = \beta^{1/2}$$

$$= > \alpha x^{3/2} = \beta^{1/2} = \beta^{1/2}$$

$$= >$$

② Show that evaluate of the ellipse
$$\frac{\chi^2}{\alpha^2} + \frac{y^2}{b^2}$$
 is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$

Given.

$$\frac{\alpha^2}{\chi^2} + \frac{\beta^2}{2} = 1 \longrightarrow 0$$

Let 1 = aloso, y = bsino

$$\frac{dx}{d\theta} = -a \sin \theta, \frac{dy}{d\theta} = b \cos \theta$$

$$y_1 = \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{b\cos\theta}{-a\sin\theta} = -\frac{b}{a} \cot\theta \longrightarrow 2$$

differentiate 2 w r tx

$$\Rightarrow y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

=)
$$y_2 = \frac{d}{d\theta} \left(\frac{dy}{dx} \right) \frac{d\theta}{dx}$$

$$\Rightarrow y_2 = \frac{d}{d\theta} \left(-\frac{b}{\alpha} \omega t \theta \right) \cdot \frac{1}{dx/d\theta}$$

$$= \frac{1}{a} y_2 = \frac{-b}{a} \left(-\cos ec^2 \theta\right) \cdot \frac{1}{-a \sin \theta}$$

$$\Rightarrow y_2 = -\frac{b}{a^2} \frac{1}{\sin^2\theta} \cdot \frac{1}{\sin\theta}$$

$$\Rightarrow y_2 = \frac{-b}{a^2 \sin^2 \theta}$$

$$= \int (\partial_z - \rho_z)_{z/3} \longrightarrow 3$$

$$= \frac{1}{-b/a^2 \sin \theta} + \left(1 + \frac{b^2}{a^2} \cot^2 \theta\right)$$

$$\Rightarrow \beta = b \sin \theta - \frac{\alpha^2 \sin^3 \theta}{b} - b \sin \theta + b \sin^3 \theta$$

$$\Rightarrow \beta = \left(p - \frac{\rho}{\sigma_s} \right) \sin_3 \theta$$

$$\Rightarrow \beta = \left(\frac{p_3 - \sigma_3}{p_3 - \sigma_3}\right) \sin_3 \theta$$

$$= \sin^3 \theta = \frac{b^2 - 0^2}{b^2}$$

$$\Rightarrow \beta = \left(\frac{b^2 - a^2}{b}\right) \sin^3 \theta$$

$$\Rightarrow \sin^3 \theta = \frac{b\beta}{b^2 - a^2}$$

$$\Rightarrow \sin^3 \theta = \frac{b\beta}{b^2 - a^2}$$

$$= \int Sin_{\theta} \theta = \frac{(\beta\beta)^{2}}{(\beta\beta)^{2}}$$

$$=) Sin^2 \Theta = \frac{(b\beta)^{2/3}}{(a^2 - b^2)^{2/3}} \longrightarrow \emptyset$$

$$(3) + (4) = (\cos^2\theta + \sin^2\theta = \frac{(a4)^{2/3}}{(a^2 - b^2)^{2/3}} + \frac{(a^2 - b^2)^{2/3}}{(b^2)^{2/3}}$$

$$(ax)^{5/3} + (by)^{5/3} = (a^2 - b^2)^{2/3}$$

$$\Rightarrow (ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$$

$$\Rightarrow (ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$$

3 Show that the evaluate of the hyperbola $\frac{\chi^2}{a^2} - \frac{y^2}{b^2} = 1$, $(ax)^{2/3} - (by)^{2/3} = (a^2 + b^2)^{2/3}$

Given,

$$\frac{\chi^2}{\Delta^2} - \frac{y^2}{b^2} = 1 \longrightarrow 0$$

$$\frac{dx}{d\theta} = a \operatorname{Sec} \theta \tan \theta$$
, $\frac{dy}{d\theta} = b \operatorname{Sec}^2 \theta$

$$\therefore y_1 = \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{bSec^2\theta}{aSec\theta \tan\theta} = \frac{bSec\theta}{a\tan\theta}$$

$$y_i = \frac{b}{a}$$
 Cosec θ

$$y_2 = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{d\theta} \left(\frac{dy}{dx} \right) \frac{d\theta}{dx}$$

=
$$\frac{d}{d\theta} \left(\frac{b}{a} \cos \theta \right) \frac{1}{dx/d\theta}$$

=
$$\frac{b}{a}$$
 (- $\cos c\theta$. $\omega t\theta$). $\frac{1}{a \sec \theta + \cos \theta}$

$$= \frac{-b}{\alpha^{2}} \frac{1}{\sin \theta} \frac{\cos \theta}{\sin \theta} \cdot (\cos \theta) \cdot \frac{\cos \theta}{\sin \theta}$$

$$y_{2} = \frac{-b}{\alpha^{2}} \frac{\cos^{3} \theta}{\sin^{3} \theta}$$

$$\therefore d = x - y_{1} (1 + y_{1}^{2})$$

$$\frac{-b}{\alpha^{2}} \frac{\cos^{3} \theta}{\sin^{3} \theta}$$

$$\frac{-b}{\alpha^{2}} \frac{\cos^{3} \theta}{\sin^{3} \theta}$$

$$\frac{-b}{\alpha^{2}} \frac{\cos^{3} \theta}{\sin^{3} \theta}$$

$$\frac{-b}{\alpha^{2}} \frac{\cos^{3} \theta}{\sin^{3} \theta} \left[1 + \frac{b^{2}}{\alpha^{2}} \cdot \frac{1}{\sin^{2} \theta}\right]$$

$$d = a \sec \theta + \frac{a}{a} \frac{\sin^{2} \theta}{\cos^{3} \theta} \left[\frac{a^{2} \sin^{2} \theta + b^{2}}{a^{2} \sin^{2} \theta}\right]$$

$$d = a \sec \theta + \frac{1}{a \cos^{3} \theta} \left[\frac{a^{2} \sin^{2} \theta + b^{2}}{a^{2} \sin^{2} \theta}\right]$$

$$d = a \sec \theta + \frac{a \sin^{2} \theta}{\cos^{3} \theta} \left[\frac{a^{2} \sin^{2} \theta + b^{2}}{a^{2} \sin^{2} \theta}\right]$$

$$d = a \sec \theta + \frac{a \sin^{2} \theta}{\cos^{3} \theta} \left[\frac{a^{2} \sin^{2} \theta + b^{2}}{a^{2} \sin^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \sin^{2} \theta}{\cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{2} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$d = a \sec \theta + \frac{a \cos^{3} \theta}{a \cos^{3} \theta} \left[\frac{a \cos^{3} \theta}{a \cos^{3} \theta}\right]$$

$$\begin{aligned}
& \{ = \alpha \operatorname{Sec}\theta + \alpha \operatorname{Sec}^{3}\theta - a \operatorname{Sec}\theta + \frac{b^{2}}{\alpha} \operatorname{Sec}^{3}\theta \\
& = \left(\alpha + \frac{b^{2}}{\alpha} \right) \operatorname{Sec}^{3}\theta \\
& = \left(\frac{\alpha^{2} + b^{2}}{\alpha} \right) \operatorname{Sec}^{3}\theta \\
& = \left(\frac{\alpha^{2} + b^{2}}{\alpha} \right) \operatorname{Sec}^{3}\theta \\
& = \left(\frac{\alpha^{2} + b^{2}}{\alpha^{2} + b^{2}} \right) \operatorname{Sec}^{3}\theta \\
& = \left(\frac{\alpha^{2} + b^{2}}{\alpha^{2} + b^{2}} \right) \xrightarrow{\left(\alpha^{2} + b^{2} \right)^{2/3}} = \left(\frac{\alpha^{2} + b^{2}}{\alpha^{2} + b^{2}} \right)^{2/3} = \left(\frac{\alpha^{2} + b^{2}}{\alpha^{2} + b^{2$$

Given,

$$= \frac{r}{4\pi} \frac{dr}{d\theta} = a^{n \cos n \theta}$$

$$\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{a^{n(osn\theta)}}{r^{n}}$$

$$\Rightarrow oot \phi = \frac{a^{n(osn\theta)}}{a^{nsinn\theta}}$$

$$\Rightarrow oot \phi = oot n\theta$$

$$\Rightarrow \phi = n\theta$$

=)
$$\omega + \phi = \frac{\alpha^{n \cos n \theta}}{\alpha^{n \sin n \theta}}$$

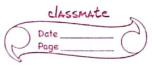
We know that, the pedal equation

$$\frac{1}{p^2} = \frac{1}{r^2} \left(1 + \cot^2 \phi \right)$$

=>
$$\frac{1}{p^2} = \frac{1}{r^2} (1 + \cot^2 n\theta)$$

$$\Rightarrow \frac{1}{P^2} : \frac{1}{\pi^2} Cosec^2 n \theta$$

$$\Rightarrow$$
 $P = \gamma \left(\frac{\gamma^n}{\alpha^n} \right)$


$$\Rightarrow b = \frac{\sigma_u}{\sigma_{u+1}}$$

B. Find the pedal equation for the following Polar curves. 1 . 7 = a m cosm + b m Sinm 0 Given. $\eta_m = \sigma_m \cos \theta + \rho_m \sin \theta \longrightarrow 0$ differentiate (1) w. r t o mym-1 dr = - Sinmo. mam + cosmo. mbm Tm dr = bm Cosm & - amsinm & 1 dr = bm cosmu - am sinmo amcosme + bmsinme Cot $\phi = b^m$ Cosm $\theta - a^m$ Sinm θ am cosme + bm Sinme 1 + Cot² \$ = 1 + (b^m Cosm θ - a^m Sinm θ)² (amcosm + bm Sin ma)2 = $(a^m \omega s m\theta + b^m s in m\theta)^2 + (b^m \omega s m\theta - a^m s in m\theta)^2$ (am cosm + bm Sinme)2 1 + cot & = \$ (arm + Prm) .. W. K.T the pedal equation $\frac{1}{p^2} = \frac{1}{x^2} \left(1 + \omega t^2 \phi \right)$ $\frac{b_5}{1} = \frac{\lambda_5}{1} \left(\frac{\lambda_5 m}{\sigma_{5m} + \rho_{5m}} \right)$

$$= \frac{1}{b_{3}} = \frac{a_{3m} + b_{3m}}{a_{3m} + b_{3m}}$$

1760	Module - II
	Difference of the property of the first of the second of t
	Differential calculus = 17
2	Taylor's and Maclawin's series expansions
•	The series expansions of a function $y=f(x)$ about a point $x=a$ is given by $f(x)=f(a)+f(x-a)f'(a)+(x-a)^2f''(a)+(x-a)^3f'''(a)+\cdots$
	is called a taylox's series expansions.
•	If a =0 then eq. (1) becomes $f(x) = f(0) + xf'(0) + x^2 f''(0) + x^3 f'''(0) + x^3 f$
O۱۰	Obtain the taylor's series of expansion of log (cosx) about a point $a=\pi/\mu$
٦	
	$f(x) = \log(\cos x) = \int \left(\pi(y) = \log\left(\cos \pi(y)\right) = \log(\sqrt{12}) = -\log\sqrt{2}$
	$f'(x) = \frac{(-\sin x)}{\cos x} \Rightarrow f'(x) = -\tan x \Rightarrow f(\pi/y) = -\tan y = -1$
	$f''(x) = -Sec^2 x = f''(\pi y) = -Sec^2 \pi y = -2$
	$f'''(x) = -2Sec^{2}x + anx \Rightarrow f'''(\pi/4) = -2Sec^{2}\pi/4 \cdot tan\pi/4 = -4$
	$\log(\cos x) = -\log\sqrt{2} + (x - \pi/4)(-1) + (x - \pi/4)^{2}(-2) + (x - \pi/4)^{3}(-4) + (x - \pi/4)^$
	(TH) (TH)
	(xe) (frilex (xx)-(e-) = 12 x x 1 - (r) 119.
	21(*3.77)
	VI - 118 - 118 - (197)

	Sub in eqn (1)
	$f(x) = \pi/4 + (\alpha - 1)/1/2 + (\alpha - 1)/2 \times (-1/2) + (\alpha - 1/3) / 1/2) + $
	t 2
	$\tan^{-1}\alpha = \pi/4 + (\alpha - 1) - (\alpha - 1)^2 + (\alpha - 1)^3 + \cdots$
	7. (2, 2)
e	Maclaunin's senies
	obtain the madauxin's series of expression of f(x)=log(1+ex).
	$\frac{3i}{2\pi} = \frac{3i}{4(0) + x^2} \frac{3i}{4} \frac{3i}{4$
	MOTER AND ANGENESIS OF MALES PROPERTY OF AND APPROPRIA
	we have f(x) = log(1+ex) = f(0) = log(1+ex) = log(1+1) = logo.
	$\xi_1(x) = 6x$ $\Rightarrow \xi_1(0) = 60 = 1 = 1/3$
	41.07
	$\frac{f_{11}(x) = (1+e^{x})e^{x} - e^{x}(e^{x})}{(1+e^{x})^{2}} = e^{x} + e^{2x} - e^{x} = e^{x}}$ (1+e^{x}) ² (1+e^{x}) ² .
	$(1+e^{\chi})^2$ $(1+e^{\chi})^2$ $(1+e^{\chi})^2$.
	$= \frac{P_{11}(0)}{(1169)^{2}} = \frac{1}{(111)^{2}} = \frac{1}{4}$
	(11eg)2 (H1)2 /4 (H)
	$f^{\text{III}}(x) = (He^{x})^{2}(e^{x}) - e^{x} \cdot 8(He^{x})e^{x} = 9^{\text{III}}(0) = 4-4 = 0 \text{ (1+ }e^{x})^{4}$
	(1+ e²)પ
	Sub in (1).
	$f(x) = \log x + \frac{1}{2} + \frac{1}{2} (14) + \frac{1}{2} (0) +$
	2 (1) 3!
	log(Hex)=1098 + 2/9 + 22 +//
	8 17 11

2. find the power series expansion of f(x) = log (secx) in power of x upto the terms containing &4.

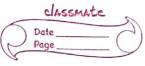
· 4. 4. w

we have
$$f(\alpha) = \log(\sec \alpha) = f(0) = \log(\sec 0) = \log(1 = 0)$$

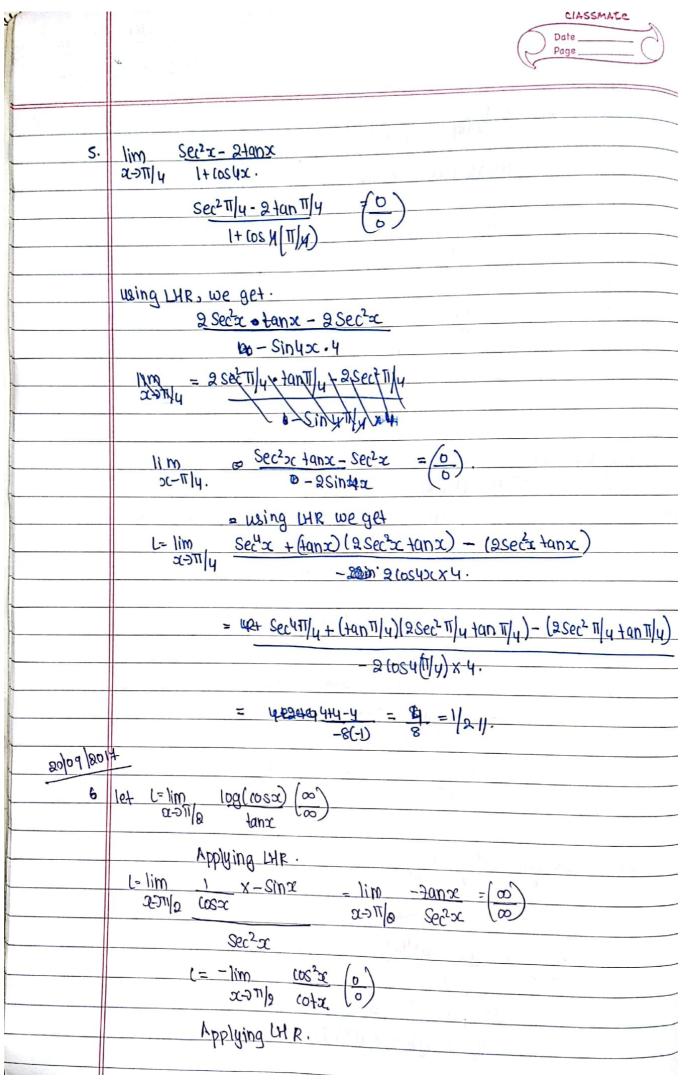
 $f'(\alpha) = \frac{1}{\sec \alpha} \frac{\sec \alpha}{\cot \alpha} f(0) = \frac{1}{2} \frac{\sec \alpha}{\cot \alpha} f(0) = \frac{1}{2} \frac{\cot \alpha}{\cot \alpha} f(0) = \frac{1}{2} \frac{\cot$

	Page
	f ^{1ν} (x) = 2 Sec ² x (Sec ² x) + (2+anx) (2 Sec ² x + anx).
	PN(0)= 2 Sec2(0) (Sec2(0)) + 0 = 21.
	sub in ean O.
	$f(x) = 0 + x \times 0 + \frac{x^2(1)}{2!} + \frac{x^3}{3!} (b) + \frac{x^2(2)}{4!} + \cdots$
75	$= \frac{2}{2} \frac{19}{19} \cdots //$
.(511)0	Control of the State of the Sta
03.	obtain the madautin's series of expansion f(x)= tan't
	Given $f(x) = \tan^{-1}x$
	$\frac{3i}{(0)+x_{1}(0)+x_{5}}\frac{3i}{(n)(0)+x_{3}}\frac{4i}{(0)+x_{4}}\frac{4i}{(0)+\cdots}$
	21 3) 41
	wehave.
	$f(x) = \tan^3 x = f(0) = \tan^3 (0) = 0.$
	$f_1(x) = \frac{1+x_2}{1+x_3} = f_2(0) = \frac{1+x_3}{1+x_3}$
	(10 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	f''(x) = -1 x9x = -2x = f(0) = (-2x0) = 0.
	$P^{(1)}(x) = \frac{(1+x^2)^2(-2) - (-2x) \times 2(1+x^2)(2x)}{(1+x^2)^4}$
	PIII (D)= -240 =-211
who x	sub in eq ()
	$81 = 0 + x \times 1 + x_5 \times 0 + x_3 \times -27 \cdots$
	$-\tan^{-1}\alpha = \alpha - \frac{\alpha_3}{2} + \cdots$
	3
-0-	

14/29/20	Page			
(o4)	obtain the Machunin's series expansion of f(x) = log(Hrosx), in more			
	of a upto the terms contains at.			
	. £d·a			
	\$60 = \$(0) + \ta f'(0) + \ta2 p''(0) + \ta3 p'''(0) + \tay p''(0) +			
	we have f(a) = log (1+(os ∞) =) f(o)= log (1+ (os (o)) = log g.			
	$P(x) = -Sinx = -8Sinx(n \cos x) - P'(x) = -3cnx(n \cos x)$			
	$\frac{g'(x) = -\sin x}{1 + \cos x} = -\frac{8\sin x}{2}(\cos x/2) = f'(x) = -\tan x/2 + .$			
	$\frac{1}{2}$ $O(D) = D//$			
	$f''(a) = -1/2 \operatorname{Se}^2 \alpha/2 = f''(0) = -1/2 \operatorname{Sec}^2(0) = -1/2.$			
	$f'''(x) = -1/2 \times 2 \sec^2 x / 2 + \tan x / 2 = f'''(0) = - \sec^2(0) + \tan(0) = 0 / 1$			
	$f^{(v)}(x) = -Sec^2 x/2$. $Sec^2 x/2 \times 1/2 - tanx/2 \times 2Sec^2 x/2 + tanx/2$			
	Pr (0) = -1/2. Sech (0) - 0=-1/2 1.			
Ý	sub in (1)			
	$f(x) = \log_2 + x \times 0 + \frac{1}{8} \frac{x^2}{6} \times (-1/2) + \frac{x^3}{6} \times 0 + \frac{x^4}{24} \times (-1) + \cdots$			
	$\log(1+\log x) = \log 2 - \frac{x^2}{4} - \frac{x^4}{48} + \cdots //$			
& & & ₽≥· ****	Find the maduin's series of JHSINEX by considering the terms up to 20 4th degree.			
	w.k.t.			
	$f(x) = f(0) + x f'(0) + \frac{x^2}{x^2} f''(0) + \frac{x^3}{x^3} f'''(0) + \frac{x^4}{x^4} f''(0) + \cdots \rightarrow 0$			
	we have.			
	$f(x) = \sqrt{1 + \sin 2x}$			
	= $\sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x} = \sqrt{\sin^2 x + \cos x}$			
	$f(x) = \sin x + \cos x \cdot \Rightarrow f(0) = 0 + 1 = 1.$			
	$f'(x) = (\cos x - \sin x) = f(0) = 1 - 0 = 1$			
	$p(x) = -\sin x - (\cos x - \frac{1}{2}) + f(0) = 0 - 1 = -1$			
	$f^{(1)}(x) = -(\infty x + \sin x)$ = $f(x) = -1 + 0 = -1$			
	$f^{(1)} = \sin x + (\cos x =) f(0) = 0 + 1 = 1$			


Sub in (1) we get. $3! 3! 4!$ $3! 3! 4!$ $\sqrt{1+3!} + x + \frac{1}{x^2} + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x} + \frac{1}{x$	
She in (1) medet. She in (1) medet.	19/
$\frac{3i}{4(x)^{-1} + 3x} \frac{3i}{1 + 3x} \frac{3i}{x^{-1} + 3x} \frac{4i}{x^{-1} + 3x} \frac{3i}{x^{-1} $	
$\frac{3i}{4(x)^{-1}+3x}\frac{3i}{1+3x}\frac{3i}{1+3x}\frac{4i}{1+3x}\frac{1}{1+3x}$	
$\frac{3i}{4(x)^{-1}+4x}\frac{3i}{1+x_5}\frac{3i}{x-1+x_5}\frac{4i}{1+x_5}\frac{4i}{x+1+x_5}$	
$\sqrt{1+\sin 2x} = 1+x-x^2-x^3+x^4+\cdots$	_
2 6 24	
06. & obtain the series expansion of $e^{\sin x}$ in power of x .	
Given	
$\xi(x) = e^{\sin x}$	
w.k. 7.	
$f(x) = f(0) + x f_1(0) + x_0 f_1(0) + \frac{3!}{x_0} f_{11}(0) + \cdots \rightarrow 0.$	
we have.	
$f(x) = e^{\sin x}$ $f(0) = e^{\sin 0} = e^{0} = 1$.	
$f'(x) = e^{\sin x} \cdot (\cos x = f'(x) = f(x) (\cos x = f'(0) = f(0) \times (\cos 0)$	
$f''(x) = f(x) - \sin x + \cos x \cdot f'(x) = f'(x) = -f(x) - \sin x + \cos x \cdot f'(x) = -f(x) - \cos x + $	(1) 01
1 - 0 +	10)0710
=0+1	1 1
$f'''(x) = f(x) \in osx - sinx f'(x) - sinx f'(x) + (osx \cdot f'(x)).$	
$\frac{1}{(0)} = -\frac{1}{(0)} \frac{1}{(0)} \frac$	(n). [1]
1-0-0+1	(4)
= 0	
Sub in 1) we get.	
$f(x) = 1 + xx + \frac{x^2}{2!} \times 1 + \frac{x^3}{3!} \times 0 + \cdots$	
$= 1+x+x^2+\cdots$	
	$\overline{}$
	-

Scanned by CamScanner


14/09/20	classmate Date			
141011				
*	In Determinate forms:			
****	Of the expansion $f(x)$ at $x = a$ assumes the forms like. $0/0 \cdot 2 \cdot \infty/\infty \cdot 2$			
	THE TOP OSCITES ANY VAILE WE			
-15/09/2017	called the indepertment of forms.			
	L Hospital's oule			
	of flx) and g(x) are any two functions such that im			
(i)	$\lim_{\alpha \to \infty} f(x) = f(\alpha) = 0$			
	N			
	$\lim_{n \to \infty} g(x) = g(n) = 0$			
	α-∋δ			
(")				
	$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$			
(iii)	further if $f'(a) = 0 = 9(a)$ then			
	$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)}$			
0.1	Olo and olo forms			
	Evalute the following. Lim xe^{x} - log(HZ) Wil lim log(losx)			
0	$\frac{\lim_{x\to 0} \frac{\pi e^x - \log(Hx)}{x^2}}{x^2} \frac{\text{Nil } \lim_{x\to 0} \frac{\log(\cos x)}{x + \ln x}}{x + \ln x}$			
M4 4 0	. De la companya de l			
*	$\frac{1111 \text{ lim } 1-\cos x}{\cos (1+\infty)} \qquad (iii) \text{ lim } \log (x-7i/2)}{\cos (x-7i/2)} \qquad (iii) \text{ lim } \log (x-7i/2)$			
	$\frac{\text{(iii) } \lim_{x \to 0} \log(\sin x) }{ x ^{2} + 2^{2}} \qquad \frac{\text{(Viii) } \lim_{x \to 0} \log^{\sin 2x} x }{ x ^{2} + 2^{2}}$			
(v)				
(1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
(N)	lim sec2x-2+anx box) lim box			
(.,	TIM Sec2x-2+anx bx) lim 16ax x=0 (osecx.			
	And the state of t			
- 10				

	classmate Date Page		
01.	Let u L= him $xe^{x} - \log(1+x)$ ($\frac{0}{0}$)		
Appling Lyr, weget			
	$\frac{L=\lim_{z\to 0} xe^z+e^z-\left(\frac{1}{\mu x}\right)}{2x}=\left(\frac{0}{0}\right)$		
	Using Lyr, we get L= lim xer+er+1 x-20 (1+x2)		
	2		
02.	$= \frac{0+1+1+1}{2} = 3 _{2}.$ $100 \times 100 \times $		
	Using LHR, we get $\frac{\text{L= lim}}{x \Rightarrow 0} \frac{\text{Sin } x}{\frac{x}{(1+x)}} = \frac{0}{0}$		
	Using LHR, we get L= lim = losx = 1+2-x (1+x)2 + 1+x		
	$= \lim_{X \to 0} \frac{\cos x}{(1+x)^2 + \frac{1}{(1+x)}}$		
	L= 1/1+1= Y211.		
03.	$\frac{ e+ L= \lim_{z \to \pi/2} og(Sinx) }{ \pi _{2} + 2 x } = \frac{ e+ L= \lim_{z \to \pi/2} og(Sinx) }{ \sigma _{2}}$		
	L= lim 1 x losx .		
	2 (11-1)		

Scanned by CamScanner

	Page
	$L = -\frac{1}{2} \lim_{x \to \pi/2} \frac{\cot x}{\pi/2 + x} \left(\frac{0}{0} \right)$
	using LHK, we get
	$L = \lim_{X \to \infty} \frac{\cos x}{1 + x \cdot x} + \frac{1}{1 + x}$
	(1+X) ² + 1+X.
	$= \lim_{\alpha \to 0} \frac{\cos \alpha}{(1+\alpha)^2} + \frac{1}{(1+\alpha)^2}$
	L= 1 = 1)9.
b3.	$\frac{ p+L=\lim_{x \to T} \frac{\log(\sin x)}{(T _2-1)^2} \binom{o}{o}}{ p+L=\lim_{x \to T} \frac{\log(\sin x)}{(x-1)^2}}$
	Using LHR we get $ \begin{array}{c cccc} L = \lim & 1 & x \cos x \\ \hline x -) \pi _2 & \underline{\sin} x \end{array} $ $ 2 \left[\pi _2 - x \right] (-1) $
<u> </u>	$\frac{2 \left(\frac{1}{2} - \frac{x}{2} \right) \left(-\frac{1}{2} \right)}{2 + \frac{1}{2} - \frac{x}{2} \left(\frac{1}{2} \right)}$
Page 1	L=-1/2 lim! /losec2x ~====================================
	$=-1/2 \times (\csc^2 \pi i/2 = -1/2 \times i = -1/2$
٥५.	let L= $\lim_{x \to 0} \frac{q^x - b^x}{x} \begin{pmatrix} b \\ 0 \end{pmatrix}$
	Using Lyk we get
(4)	$\frac{1}{x + b} = \frac{1}{\alpha^{\chi} \log \alpha - b^{\chi} \log b}$
	$= a^{9} \log a - b^{9} \log b$ $\log a - \log b = \log (a/b) / (a/b$

	Classm	ite (
6	Date Page	

	Date
	L=-lim +2 losx Sinx x=n/2 +2 losec2x
	$= -\frac{2 \cos \pi}{9 \cdot \sin \pi} = \frac{2 \times 0 \times 1}{1} = 0$
\(\frac{\pi_{\chi}}{\pi_{\chi}}\)	$\frac{ x ^{2} - x ^{2}}{ x ^{2}} = \frac{ x ^{2} - x }{ x ^{2}} = \frac{ x ^{2}}{ x ^{2}}$
	Applying LHR $ \begin{array}{c c} & l = \lim & 1 \\ & \propto \exists \pi _{2} & \alpha - \overline{\pi} _{2} & (\frac{\infty}{\infty}) \end{array} $
	$\frac{Ser^{2}x}{L = \lim_{\alpha \to \pi/\theta} \frac{1}{x} \frac{1}{Ser^{2}x}}$
e de la companya de l	$\frac{C = \lim_{\alpha \to \pi/2} \frac{\cos^2 \alpha}{\alpha - \pi/2} \left(\frac{\sigma}{\sigma} \right)}{\cos^2 \alpha}$
	C- lim - 2 cos x sin x
	$= -2 \cos \frac{1}{2} \cdot \sin \frac{1}{2} = 0//$
8.	$\frac{\text{let } l = \lim_{\alpha \to 0} \log \sin 2\alpha}{\sin 2\alpha} = \lim_{\alpha \to 0} \frac{\log \sin 2\alpha}{\log \sin \alpha} \left(\frac{\infty}{\infty}\right)$
	Applying CHR we get
	$\frac{C = \lim_{x \to \infty} 1 \times \cos x \times 2}{x \to \infty} = \lim_{x \to \infty} \cot x \times \cos x$ $\frac{1}{\sin x} \times \cos x \qquad \cot x$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Using (HK $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$
	TO THE STATE OF TH

	Classmate Date
q.	let
	L= lim log tanax = lin log tanax x=00 log tanbx
	Applying LHRs L= lim _1
	9/b 1im tosax x 1 Sinbx (os2ax
	Sinbx (082bx
	$\frac{9 \left \lim_{x \to 6} 2 \frac{\sin bx}{\cos ax} \frac{\cos bx}{\cos ax} - 9 \right \lim_{x \to 6} \frac{\sin abx}{\sin ax} \left(\frac{6}{6} \right)}{2 \sin ax}$
	Using LHR. L= 8/15 lim tosapa x 2K = 1 Cosaaxxaa
10.	$\begin{array}{c cccc} let & & & log & & \infty \\ \hline & & & & & log & & \infty \\ \hline & & & & & \infty \\ \hline & & & & & & \infty \\ \end{array}$
	Applying Lyr. L= $\lim_{x \to 0} \frac{1/x}{-(\cos x \cdot \cos x)} = -\lim_{x \to 0} \frac{\sin x \cdot \tan x}{x} = 0$ $\lim_{x \to 0} \frac{1/x}{-(\cos x \cdot \cos x)} = \lim_{x \to 0} \frac{\sin x \cdot \tan x}{x} = 0$
	$= -\lim_{\alpha \to 0} \left(\frac{\sin \alpha}{x} \right) \times \lim_{\alpha \to 0} \left(\frac{1}{2} \cos \alpha \right)$
	$= -1 \times -1 \times -1 \times 0$

			classmate
			Date
10014			Page
2 Joyloo14			3
	= 0.0.00		
	Type 2 0°,00°, 100 forms.		
	Evaluate the following:		
		80 DG.	1 m 1 (2004 / 1/2
01,	1im 2 1-2	. 00.	lim / fonx //x
œ,	lim (sing)tana.		
	a)nb	₩ OA	lim / The done 1 1/x
	, 25-11-20	0 1	$\lim_{\alpha\to\infty} \left \frac{\pi}{2} - \tan^2 \alpha \right ^{1/2}$
₩ B	1:m (1-22) 108(1-2)		
	(a)	(C)	8. lim ((ola)tana
*	11m (2-2/a) 10 tan (22)		₫-96
₩	1im (2-2/a) 18 (3a)		
[₩] 65	$\frac{\alpha \Rightarrow 0}{1/\omega} \left(\frac{3}{\alpha_{4} + p_{\alpha} + c} \right)_{1/\alpha}$	09.	lim x Sinx.
65	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	01.	α-9δ
	(2) (-1:00 - 1-8 (.00)		1:00 Lo(0:) ()
Ol·	(ot (= im x 1-x (100)		$\lim_{x \to \pi/8} \sup_{(0,1)} \frac{1}{(0,1)} \frac{1}{(0,1)}$
			$x \leftrightarrow x \leftrightarrow x \leftrightarrow x$
	$\log L = \lim_{\alpha \to 1} \log S_{\alpha} = \frac{1}{1-\alpha} $		using Use
	0 a31		3 017
	$\frac{\alpha - 1}{\sin 1 - \cos \alpha}$		log L= lim 1 x 105 2
	αθ1 1-2		x-311/a Sina
	los 1 = 1'm los m 1 = 1		-(0sec ² x.
	109 C = 1/m 109x (0)		
	1-2		= - lim cola
	Applying UHR		$\frac{x - \lim_{n \to \infty} \cos^2 x}{\cos^2 x}$
	Ima I = Vica Va		
	log L= lim 1/x		108 (0 =0
			·
	log L= -1		L=e°=1
	l=e ⁻¹		
	L-E		1 12
			03. let $C = \lim_{x \to 0} (1-x^2) \cos(1-x) (0^2)$
. go	let = lim (Sing) tanx(100)		03. let $l = \lim_{x \to 0} (1 - x^2) \frac{1}{\log(1 - x)} (b^0)$
	let 1= lim (Sinz) tanx(100)		log (1-22) 100 (1-22) 100 (1-22) 1000
		-	2 (1 α) (1 α)
	log c = lim log (Sinx) tanx		
	واالحد		$= \lim_{n \to \infty} 1 \cdot \log(1-x^2)$
	5 No. 1-5 1-10'-1		$\frac{3c_{01} \cdot \log(1-x)}{1 \cdot \log(1-x_{0})}$
	= lim tanz. log (Sinz)	-	$\frac{\log l = \lim_{\alpha \ge 1} \frac{\log(1-\alpha^2)}{\log(1-\alpha)} \left(\frac{\alpha}{\infty}\right)}{\log(1-\alpha)}$
	1.7+11/8		$\log L = \lim_{n \to \infty} \frac{\log(1-2^n)}{n} \left(\frac{\infty}{n}\right)$
No.			رد-۱۱۵۱ احم

	and the second test of the secon	classmate
		Date
	applying LHR.	
	$\frac{ \log \Gamma = im }{ x-3 } = \frac{ x-3 }{ x-3 }$	
	(1-3)x(-1)	
	$(x-1) \times \frac{(x+1)(x-1)}{x} \stackrel{\text{def}}{=} \frac{\pi i l \mathcal{E}}{z}$	
	100 (1+1) = 2x1 = 1	
	L=e.	
Ч.	let $l = \lim_{\alpha \to \infty} \left(\frac{\partial - \chi_{\alpha}}{\partial \alpha} \right)^{t + \alpha} \left(\frac{\pi \chi_{\alpha}}{2\alpha} \right) \left(\frac{\pi \chi_{\alpha}}{2\alpha} \right)$	
	€ log L= lim log (2-α/a) α->α	
	$= \lim_{x \to a} \tan \left(\frac{\pi x}{8a} \right) \cdot \log \left(\frac{9 \cdot x}{a} \right)$	
	$\log \left(-\frac{1}{x+\alpha}\right) \log \frac{\left(\frac{\alpha}{\alpha} - \frac{\gamma}{\alpha}\right)}{\left(\frac{\alpha}{\alpha} + \frac{\pi x}{\alpha}\right)} \left(\frac{\alpha}{\alpha}\right)$	
	Applying LHR, we get.	
	logL= lim 1 x (+1/a)	
-	1081-1m 1 x (+1/a) 7(05ec2(1/a)x 1/2a	
	= 2/1 x 1/2 = 2/1 x 1	
-	109 1= 2/m => 1= e 2/m	

	da	ssmate	
	Date Page		3
6	Page .		

let /23,12×1,24, (1∞)
$\frac{x \rightarrow 0}{L = \lim_{x \rightarrow 0} \left(\frac{3}{2x^{4}} \frac{1}{b^{x} + c^{x}} \right)^{1/4}} \left(1^{\infty} \right)$
$\log L = \lim_{x \to 0} \log \left(\frac{a^2 + b^2 + c^2}{3} \right)^{1/2} = \lim_{x \to 0} \log \left(\frac{a^2 + b^2 + c^2}{3} \right) = \left(\frac{a^2 + b^2 + c^2}{3} \right)$
applying UNK we get.
$\log C = \lim_{\alpha \to 0} \frac{1}{(a^{\alpha + b + c^{\alpha}})} \times \frac{1}{3} \begin{cases} a^{\alpha} \log a + b^{\alpha} \log b + c^{\alpha} \log c \end{cases}$
1/3 \(\langle \frac{a_0 + b_0 + c_0}{2} \) \(\langle \frac{a_0 + b_0}{2} \) \(\langle a_0 +
1/3 { /(283) { 1080 + 1080 } }
= $\frac{1}{3} \log(abc)$.
logl= log lab () 1/3 = L= (ab () 1/3
(= (apc)/3
lat
$\frac{1}{x - 8} \left(\frac{4anx}{8} \right)^{1/2} \left(\frac{1}{8} \right)$
logl= lim log (tang) / x.
$\frac{\sin \log \left(\frac{\partial nx}{x}\right)}{x} \left(\frac{o}{o}\right)$
applying UR
$\log \left(-\frac{1}{2} \lim_{x \to \infty} \frac{1}{x} \operatorname{Sec}_{x}\right) - \tan x$
$= \lim_{x \to 0} \frac{x \sec^2 x - \tan x}{x^2} \left(\frac{0}{0} \right)$
LHR
$ g = \lim_{x \to 0} \left\{ sex + x[9sec^2x + anx] - sex^2x \right\}$

Scanned by CamScanner

	Classm	A+ c
	Date Page	
	log L= lim gased x tanx	
	= 1im Sec2x tamx.	
	$= Sec^2(o) \times tan(o)$	
	= 1X0	
	log (=6 L-e0=1	
82/04/2014		
# 1 *	let	
OE OF	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}$	
	$\log L = \lim_{\alpha \to \infty} \log \left(\pi _{2} - \tan^{-1} \alpha \right)^{1/\alpha}$	
	$= \lim_{\alpha \to \infty} \log \left(\frac{\pi}{2} - 4\alpha n^{2} \alpha \right) \left(\frac{\infty}{\infty} \right)$	
	$\frac{\text{applying LHR, we get}}{\text{log } L = \lim_{\alpha \to \infty} \frac{1}{\sqrt{1/2 - 4an^2x}} \frac{\delta_0 - 1}{\sqrt{1 + x^2}}$	
	$=-11m \qquad \sqrt{(1+\alpha^2)} \qquad \qquad \boxed{0}$	
	Using LHR.	
	log (1/m / (1+x2)2 × 2x	
	+ (1+X2)	
	$= -\lim_{x \to \infty} \frac{3x}{1+x^2} \left(\frac{\infty}{\infty} \right)$	
	log-L=-lim 2 x=00 25x	
	10g-L 11m 2	

	Page
	$= \frac{1}{m} = 0$
	L= e ⁰ =1//
	L= e = 1 //
8.	let L= $\lim_{x \to 0} (\cot x)^{tanx} (\infty^0)$
	log L = lim log (totx) tanx.
	$= \lim_{x \to \infty} \tan x \log (\cot x)$
	X->6
	$= \lim_{x \to 0} \log \frac{(\cot x)}{\cot x} \left(\frac{\infty}{\infty}\right)$
	appliying LHR
1	log L= lim 1 x - tosec2x
	-(08ec2x
	$= \lim_{\alpha \to 0} +an x = 0$
	L=e0=1.
9.	16+ (= 11m 2cinx (00)
	log (= lim log (xsinx)
Lands ye	= lim Sinx x logx
	$= \lim_{\alpha \to 0} \log_{\alpha} \left(\frac{\infty}{\infty} \right)$
	applying LHR
	10gl= lim 1/x x=>0 -10sex-10+x.
	=-lim Sinxx tanx
	$\log L = -\lim_{x \to \infty} \left(\frac{\sin x}{x} \right) + 4 \sin x$

=-1 x tan(0) = -1 XD
log L= 0 = L= e0=1//.

* Pantial differentiation.

Pantial denivatives:

of u=f(x=y) is function of o+wo independent variable oc and y then the partial derivative of u with respect to a is defined as the way was f(x+8x>y)-f(x-y)

ax x=>>> xx.

(Diffin u w.s.+ x , assuming y as constant).

Bu (on) Ly = lin f(x > y + 8y) - f(x > y)

By 8y 80

Su

(Diffin 1 word + y, assuming & as constant).

* Higher order partial derivatives

 $\frac{\partial u}{\partial u} = f(x \circ u)$ $\frac{\partial u}{\partial u} = f(x \circ u)$ $\frac{\partial u}{\partial u} = f(x \circ u)$

37 or max 3rd or may 3rd cas Alax 3rd ox Mar 3rd ox Mar

(mixed paulial denivatives)

Note Dry = Dry (or) Vay = Vyx

are always equal.

31101	
0)	if $q=u=x^3-3xy^2+x+e^x\cos y+1\rightarrow 1$ then prove that
91	
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
6)ven	u=x3-301y2 +x+ ex 105y +1 -20
	Diffr egn (1) postfally wise to.
	$\frac{\partial u}{\partial x^2} = 3x^2 - 3y^2(1) + 1 + (\cos y)e^{x}$
	∂x
	$\frac{\partial u}{\partial x^2} = 6x + (800xy)e^{q} \rightarrow 2$
	Diff eq D postially w. u.t y
	$\frac{\partial u}{\partial y} = -3\pi (9y) + e^{7}(-Siny)$
	dy
	$\frac{\partial^2 u}{\partial y^2} = -6x - e^2 \cos y - 3$
	3
	(a) +(3) =
	$\frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial y^2} = 6x + e^{x} \cos y - 6x - e^{x} \cos y$
D.2.	of $u=e^{-2\pi^2t}$ sint x sintry, then p.t $\frac{\partial^2 u}{\partial x^2}$ $\frac{\partial^2 u}{\partial y^2}$ $\frac{\partial^2 u}{\partial t}$
_ U Q!	dx2 dy2 dt
	Given
	U=e-2112t Sin 11x Sin 11y →0
	Diff' eo" (D) partially wint x.
	$\frac{\partial u}{\partial x} = e^{-2\Pi^2 t} \text{Sinny} \cdot (0 \text{S} \Pi x \times \Pi)$
	Du = e Sin Tryx Trx-Sin TrxTT
	∂x^{i}
	Bu = - TIZe - 2112t SINTY SINTIX - 20
	dz ^L
	Mya - 1 Bis 12 1
	$\frac{\partial^2 u}{\partial u^2} = -\pi^2 e^{-2\pi^2 t} \sin \pi x \sin \pi y \rightarrow (3)$
	Differ ean a paxalially 10.7.7 7.

- 1 - 1	
3	$\frac{\partial u}{\partial x} = Sin\pi x \cdot Sin\pi y \times e^{-9\pi^2 t} \times (-2\pi^2)$
	A+
	2y = -211-2e-21127 Sin Ty ->(y)
	2t
	(S) + (3) =)
	Du + Bu = -2112e-2112t Sint oc Sintly.
	$\frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = -3\pi^2 e^{-3\pi^2 t} Sin\pi x Sin\pi y.$
	using (4).
	$\frac{\partial^2 u}{\partial \alpha^2} + \frac{\partial^2 u}{\partial \mu^2} = \frac{\partial u}{\partial t}$
~	dar dyr dt
× X	0.777 01 2
	of u=e axtby flax-by) then s.T bou + & adu = 2aby.
	de dy
=>	axtpu > ~.>
	$U = e^{\alpha x + by} f(\alpha x - by) \rightarrow (1)$
	Diff req D postially whitx. $\frac{\partial u}{\partial x} = e^{\alpha x + by} \int_{0}^{x} (\alpha x - by) (\alpha) + \int_{0}^{x} (\alpha x - by) x e^{\alpha x + by} x \alpha$.
	θα = 6 - 0 + (u1 - by) (u) + + (ux by) π, σπα.
	= $ae^{ax+by} \int f'(ax-by) + f(ax-by) \cdot f(ax$
	b du = abearthy {p1 (ax-by) + f(ax-by) y-20
	$\frac{\partial \alpha}{\partial \alpha}$
	Differ ear 1 partially w. a. + y.
	$\frac{\partial y}{\partial y} = e^{\alpha x + by} f'(\alpha x - by) (-b) + f(\alpha x - by) e^{\alpha x + by} xb$
	= beax+by == f1(ax-by) + f(ax-by) &
	and the Control of the state of
	a $\partial u = abe^{ax+by} S - f'(ax-by) + f(ax-by)y \rightarrow (3)$
	ay L
	$(5)+(3) \Rightarrow$
	the feet rear physicistry of the tipe in the

+ a $\partial u = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$. $\partial y = abe^{ax+by} \int_{0}^{\infty} 2f(ax-by)y = 2abuy$.
eqp (0s (α log x) then ·P·T $\frac{3^2v}{3^2} + \frac{1}{3^2} + \frac{3^2v}{3^2} = 0$. (De (regala) = 0 (De (regala) = 0 (De (regala) = 0 (De (regala) = 0
Os (alogy) DO Osytially with the policy of t
ean (1) pantially will for
ean (1) pantially will for
$-e^{\alpha\theta}x - \sin(\alpha \log x) \times \alpha \times 1$
= eaox - sin(a logx) xa x1
= - aeas. Sin(alogs)
* " " " " " " " " " " " " " " " " " " "
Y town Y
n again contt 8
= - aeao fox: cos (alogo) xa -sinlalogo) x1}
Y ² .
= - de ab cosla logs) + ae ab Sin[alogs)
Differ ear (1) positionly wish to.
= 108(a/0801) x ea0 xa
$\frac{\partial^2 V}{\partial \theta^2} = (\cos(a)\cos x) \times e^{a\theta} \times a^2,$
$\frac{3^{2}v}{3^{2}} + \frac{1}{3} \frac{3^{2}v}{3^{2}} = \frac{-0^{2}e^{40} (05)(a \log b) + ae^{40} sin(a \log b)}{v^{2}}$
- a equ sin (a logs) + a2equ (os (a logs
82 (22)
=0/1
- 5 //
u = P(Ai + 2) in a constraint 0 in 1 1 2 1
e u = flaisys3) is a symmetric function then by finding
2

$ \begin{array}{c} c_{1} c_{1} c_{2} + c_{2} \\ c_{2} c_{3} c_{4} c_{4} c_{5} \\ c_{2} c_{4} c_{4} c_{5} c_{5} \\ c_{5} c_{4} c_{4} c_{5} \\ c_{5} c_{4} c_{4} c_{5} c_{5$		classmate
2. If $n = \log \sqrt{x_{1}^{2}+x_{2}^{2}+3}$ when prove that $(x_{1}^{2}+x_{2}^{2})(1xx+1)^{2}$. $ \begin{array}{lll} 1 & \log \sqrt{x_{1}^{2}+x_{2}^{2}+3} & (1xx+1)^{2} & (1xx+1)^{2} \\ 1 & \log \sqrt{x_{1}^{2}+x_{1}^{2}+3} & 2 & (1xx+1)^{2} & (1xx+1)^{2} \\ 2 & 2x & 2x+1 & 2x & 2x & 2x+1 & 2x+1 & 2x & 2x+1 $		
2. If $n = \log \sqrt{x_{1}^{2}+x_{2}^{2}+3}$ when prove that $(x_{1}^{2}+x_{2}^{2})(1xx+1)^{2}$. $ \begin{array}{lll} 1 & \log \sqrt{x_{1}^{2}+x_{2}^{2}+3} & (1xx+1)^{2} & (1xx+1)^{2} \\ 1 & \log \sqrt{x_{1}^{2}+x_{1}^{2}+3} & 2 & (1xx+1)^{2} & (1xx+1)^{2} \\ 2 & 2x & 2x+1 & 2x & 2x & 2x+1 & 2x+1 & 2x & 2x+1 $		
$ \begin{array}{lll} & & & & & & & & & & & & & & & & & & &$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.	of u = log \(\pi^2 + y^2 + z^2 \) than prove that (\(\pi^2 + y^2 + z^2 \) (\(\pi \alpha + \pi \)
$\begin{array}{lll} Dight & eq_{\mu} & 0 \\ & & & & & & & & & & & & & & & & &$		(N= 108 / 254A 5135
$\begin{array}{lll} Dight & eq_{\mu} & 0 \\ & & & & & & & & & & & & & & & & &$		$u = \perp \log(x^2 + y^2 + z^2) \rightarrow 0$
$\frac{\partial u}{\partial x} = \frac{1}{x} \frac{1}{x^{2}y^{2}+z^{2}} \frac{x}{x^{2}y^{2}+z^{2}}$ $\frac{\partial u}{\partial x} = \frac{(x^{2}y^{2}+z^{2})(1)-x(zx)}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{(x^{2}y^{2}+z^{2})(1)-x(zx)}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{(x^{2}+y^{2}+z^{2})}{(x^{2}+y^{2}+z^{2})}$ $\frac{(x^{2}+y^{2}+z^{2})}{(x^{2}+y^{2}+z^{2})}$		
$D_{x}^{2} = \frac{(x^{2}+y^{2}+z^{2})(1)-x(2x)}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{xx} = \frac{-x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{yy} = \frac{-y^{2}+z^{2}+x^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{xx} + U_{yy} + U_{zz} = \frac{x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{xx} + U_{yy} + U_{zz} = \frac{x^{2}+y^{2}+z^{2}-x^{2}+x^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{xx} + U_{yy} + U_{zz} = \frac{x^{2}+y^{2}+z^{2}-x^{2}+x^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{xx} + U_{yy} + U_{zz} = \frac{x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})}$ $U_{xx} + U_{yy} + U_{zx} + U_{yy} + U_{zx} + U_{yy} + U_{zx} $		La facilità de la companya della companya della companya de la companya della com
$\frac{\partial^{2}u}{\partial x^{2}} = \frac{(x^{2}+y^{2}+z^{2})(1) - x(2x)}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+y^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+x^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+x^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+x^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^{2}+x^{2}+x^{2}+x^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $\frac{\partial u}{\partial x^{2}} = \frac{-x^{2}+x^$		3x x24y2+22 x2+y2+22
$ \begin{aligned} &\text{Uax} = -3^2 + y^2 + z^2 \\ & (x^2 + y^2 + z^2)^2 \\ &\text{Uyy} = -y^2 + z^2 + x^2 \\ & (x^2 + y^2 + z^2)^2 \end{aligned} $ $ \begin{aligned} &\text{Uax} + \text{Uyy} + \text{Uz} = -x^2 + x^2 + y^2 \\ & (x^2 + y^2 + z^2)^2 \end{aligned} $ $ \begin{aligned} &\text{Uax} + \text{Uyy} + \text{Uz} = -x^2 + y^2 + z^2 \\ & (x^2 + y^2 + z^2)^2 \end{aligned} $ $ \begin{aligned} &\frac{x^2 + y^2 + z^2}{(x^2 + y^2 + z^2)^2} = 1 \end{aligned} $ $ \begin{aligned} &\text{Uax} + \text{Uyy} + \text{Uz} = -x^2 + x^2 + x^2 \\ &\frac{x^2 + y^2 + z^2}{(x^2 + y^2 + z^2)^2} = 1 \end{aligned} $		Diffu again bantially my.fx.
$(x^{2}+y^{2}+z^{2})^{2}$		$\frac{\partial^{2} u}{\partial x^{2}} = \frac{(x^{2} + y^{2} + z^{2})(1) - x(2x)}{(x^{2} + y^{2} + z^{2})^{2}}$
$ _{1} _{$		Uxx = -92+ y2+ 22 10 10 10 10 10 10 10 10 10 10 10 10 10
$U_{22} = -\frac{2^{2}+3^{2}+y^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $U_{23} + U_{yy} + U_{22} = -\frac{x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$ $-\frac{x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}} = 1$ $(x^{2}+y^{2}+z^{2}) \cdot ((x^{2}+y^{2}+z^{2})^{2})$ $(x^{2}+y^{2}+z^{2}) \cdot ((x^{2}+y^{2}+z^{2})^{2})$		$11/\sqrt{14} \text{Uyy} = -\frac{1}{3^2 + 12^2 + 2^2} + \frac{1}{3^2 + 12^2}$
$ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}} = 1 $ $ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}} = 1 $ $ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})} = 1 $		
$ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}} = 1 $ $ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}} = 1 $ $ \frac{(x^{2}+y^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})} = 1 $		$U_{22} = -2^2 + 2^2 + y^2$ $(x^2 + y^2 + z^2)^2$
$\frac{-\frac{x^{2}+y^{2}+z^{2}}{(x^{2}+y^{2}+z^{2})^{2}}}{(x^{2}+y^{2}+z^{2})^{2}} = 1$ $(x^{2}+y^{2}+z^{2})^{2} = (x^{2}+y^{2}+z^{2})$	noi Mg	Uxx + Uyy + 422 = x2+y2+x2 - x2+x2 18 to -y2+22+x2
(7242+22) (UXX+UYY+U27)=1		$(x^2+y^2+z^2)^2$
	- 4-	$\frac{-x^2+y^2+z^2}{(x^2+y^2+z^2)^2} = 1$
	7 41	[2143 122] [122 1[12 1] 2] 21
THE RESERVE OF THE RESERVE OF THE PERSON NAMED IN COLUMN TWO ASSESSMENT OF THE PERSON NAMED IN COLUMN TWO ASSES	15,144,00	

	Date Page
190	
(B)	9f y = log (x5+y3+==3-3xy=) then p.7
(ব)	2 2
(4)	$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 y = -\frac{9}{(x+y+z)^2}$
2	
	6iven u-log (x3+y3+z3-3xy2)→0
	Diff ream (1) partially with it.
	3u = 1 x (31t - 3yz) 3x x3+y3+z3-3xy2
	<u>θυ = 3(x²-yz)</u> θυ (x²-yz)
	$\frac{\partial u}{\partial y} = \frac{3(y^2 - xz)}{(x^3 + y^3 + z^3 - 3xyz)}$
	$\partial u = 3(2^2 - \alpha y)$
	$\frac{\partial 2}{\partial x^3 + y^3 + z^3 - 3xy^2}$
	(a) (busides
	$\frac{\partial u + \partial u + \partial u - 3(x^2 + y^2 + z^2 - y + -xz - xy)}{\partial x \partial y \partial t}$
	2x 2y 2t 23-3xy2
	= 2(22113+33 (12 x2 - 711)
	= 3(x2+y2+22-xy-y2-22) = 3(x2+y2+22-xy-y2-22)
	= 3 (x+y+2).
	(b) $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}\right)$
	$= \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) \left(\frac{3}{3+y+2}\right)$
	(da dy dz) (2+4+2)
	$= -3$ -3 -3 -3 $(x+y+2)^2$ $(x+y+2)^2$
	$= -9$ $(x+y+2)^2$
	(17917)

	Classmate Date Page
(pt)	of u= fon2 (b/2) -> then power that free = 22u day day
	$u = tan^{-1} \left[y x \right] \Rightarrow \mathfrak{D}$
	Diff n eqn (1) postially with a andy.
	$\frac{\partial u}{\partial x} = \frac{1}{1+\frac{y^2}{x^2}} \frac{xyx^{-1}}{x^2}$
	(x2+y2) xxx
	$\frac{\partial y}{\partial x} = \frac{-y}{x^2 + y^2}$
	$\frac{\partial y}{\partial y} = \frac{1}{14} \frac{y^{2}}{x^{2}}$
	$=\frac{1}{(x^2+y^2)}\frac{x}{x^2}$
	30 x4y2
	Diffy 6d 2 bontially cont. 3 (34) = (2,49,5) (-1)-(-1) (50) (2,540,5) (2,540,5) (2,540,5) (3,540,5)
	$\frac{\partial^2 u}{\partial x^2} = -\frac{(x_5 + h_5)_5}{(x_5 + h_5)_5} = \frac{(x_5 + h_5)_5}{(x_5 + h_5)_5}$
	Diff on 3 pantially with x $\frac{\partial (\partial y)}{\partial y} = \frac{(x^2+y^2)(1)-2(2x)}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2}$
	$\frac{\partial y}{\partial y}$
	Ordy - Ordy 11.

05/0/201	
08 *** 1	Verify that lay - Lyx given that u=24-30
	Given u=3 -30
	Dippon ean O pantially wint a andy.
	$\frac{\partial u}{\partial x} = u \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$
	$\frac{\partial u}{\partial y} = x^{y} \log x \rightarrow 3$
	Diffu & Dantially with fr.
	$\frac{2h}{3} \left(\frac{2\pi}{3n} \right) = x_{h-1} (1) + h \cdot x_{h-1} \times \log x$
	Bu (08 Uya = x4-1 [1+4/08x] 20
	9h9x
	Diffine on & paylially wrt x.
	22 ((or) Way = 0x4-1 (1+ y log x) -25)
	Dag A
	from (1) and (5)
	= Uxy = Uyx/
*	Jacobian
	1 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D
	J(U.V) 00 HUN) = Ou du du du du du du
	1 98/7
	$\frac{\partial x}{\partial x} \frac{\partial y}{\partial y}$
	5(n2/2m) 00 9(n2/2m) = 3n gn gn gn
	$ \frac{2(\pi^2 \wedge 3)}{2(\pi^2 \wedge 3)} = \frac{2(\pi^2 \wedge 3)}{2(\pi^2 \wedge 3)} = \frac{2\pi}{3} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	So no so
	9x 98

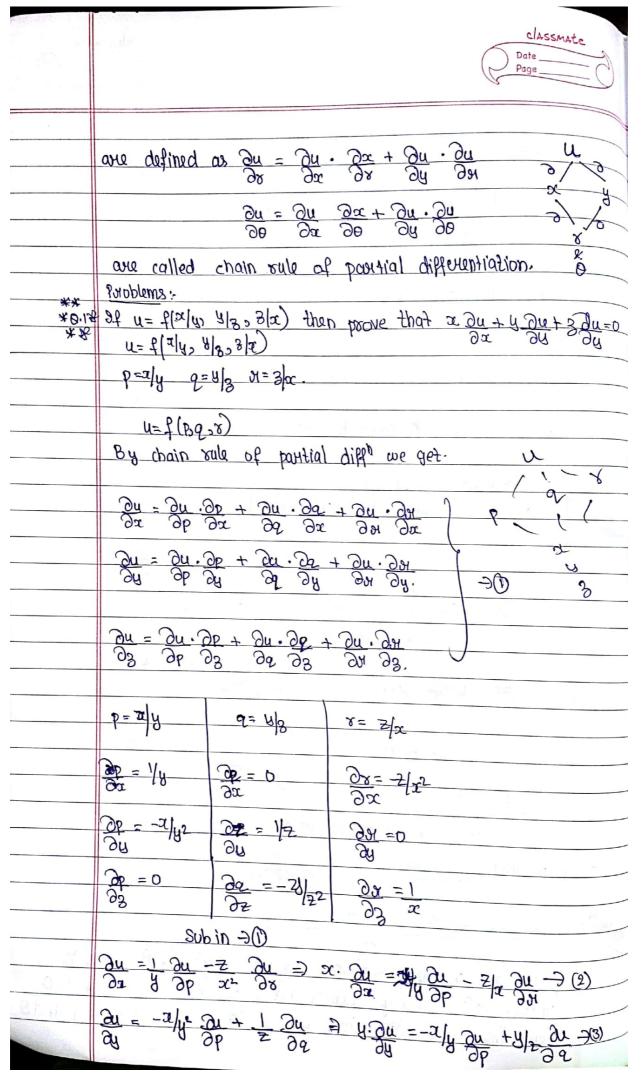
	clas	smate	1
6	Date Page		

	Date Page
0:1	Ind the Jacobiane of usus with respect to asys a biven hat
	U=2+y+2, V=y+2, W=Z
	$\frac{\partial a}{\partial n} = 1 \qquad \frac{\partial x}{\partial n} = 0 \qquad \frac{\partial x}{\partial n} \qquad \frac{\partial x}$
	$\frac{\partial u}{\partial u} = 1 \qquad \frac{\partial v}{\partial v} = 1 \qquad \frac{\partial u}{\partial v} = 0 \Rightarrow \frac{\partial u}{\partial v} = $
	$\frac{\partial s}{\partial n} = 1 \qquad \frac{\partial s}{\partial n} = 1 \qquad \frac{\partial s}{\partial n} = \frac{\partial s}{\partial n} \qquad \frac{\partial s}{\partial n} = \frac{\partial s}$
	continued to the second to the
	= 1 1
	0 1601/ (=11/10) = mil 80 17
	001
	1 - 1 1 1/1 1/1 (A 1/10 17) 17
(3)	find 3(21,1/210) where = 22+1/2+ 22, N= 24+12 w= 2+4+2
	a strain 2
	u= x2+y2+ 22, V= xy+ yz+ xz, ω=x+y+2.
	$\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$
4	Of the
	$\frac{\partial u = 2y}{\partial y} = \frac{\partial v = x + z}{\partial y} = \frac{\partial w = 1}{\partial y}$
	$\frac{\partial u}{\partial s} = \frac{\partial v}{\partial s} = \frac{\partial v}{\partial s} = \frac{\partial w}{\partial s} = 1$
	08
	20 20 90
	3
	9+2 2+2 y+x
	62 80 TO 100
	2 x (2(+2 - 1)) 2 2 2
	2x(x+z-(y+x)-2y(y+z)-(y+x))+23(y+z)-(x+z)
	MINIE H-02 / -311 (U+2 - N ~) . 0 /
	3-x-x-41) Ex-x-x-x
	2x(x+2-y-x) - 2y((y+2)-(y+x)) + 23((y+2)-(x+2)) $2x(x+2-y-x) + 23(y+2-x-2)$ $2x(x+2-y-x) + 23(y+2-x-2)$ $2x(x+2-x) + 2x(x+2x) + 2x(x+2x) = 0$

Scanned by CamScanner

of u=y3/x 5 V=Zx/y: w=xy than ST. 3 (u5v5xo)=4.
3 (20) 2) = 3 (20) 2) -4.
$u=y_3 x$ $v=z_{x_1}/y$ $w=x_1/z$
$\frac{\partial u = -88}{\partial x} \frac{\partial v}{\partial x} = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{4}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left(\frac{\partial w}{\partial x} = \frac{2}{2} \right) = \frac{2}{2} \left($
$\frac{\partial u}{\partial y} = \frac{3}{x} \frac{\partial v}{\partial y} = \frac{-2x}{y^2} \frac{\partial w}{\partial y} = \frac{x}{2}$
$\frac{\partial s}{\partial n} = n \left \frac{\partial s}{\partial n} \right = \frac{\partial s}{\partial n} = \frac{\partial s}$
wik-t f. st.
$\frac{\partial (u_1 v_2 u_2)}{\partial (x_1 v_2 v_2)} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} = \frac{-y_2}{x^2} \frac{z_1/x}{x^2} \frac{y_1/x}{x^2}$
\\ \frac{\partial \text{du}}{\partial \text{du}} \\ \frac{\partial \text{dv}}{\partial \text{du}} \\ \frac{\partial \text{du}}{\partial
$\frac{\partial x}{\partial w} \frac{\partial y}{\partial w} \frac{\partial z}{\partial w} \partial $
$\frac{1}{x} - \frac{y^2}{x^2} \left(\frac{x^2}{y^2} - \frac{x^2}{y^2} \right) - \frac{2}{x} \left(-\frac{x}{x^2} - \frac{x}{x^2} \right) + \frac{y}{x} \left(\frac{x}{y} + \frac{x}{y} \right)$
$= 6 - \frac{2}{2} \left(\frac{-2x}{2} \right) + 8 \left(\frac{2x}{8} \right)$
= 2+2=4//.
af $x = x \sin \theta \cos \phi$, $y = x \sin \theta \sin \phi$ = = $x(\cos \theta)$. $(x, \theta) = x \sin \theta \cos \phi$.
Osos Z= 80000
3x = Sin 0 (os \$\display = \sin \display = \sin \display = \frac{1}{2} = \fracc{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}
$\frac{\partial \alpha}{\partial \theta} = \cos\theta \cdot \cos\theta \cdot \delta \qquad \frac{\partial y}{\partial \theta} = \cos\theta \cdot \delta \cdot \sin\theta \qquad \frac{\partial z}{\partial \theta} = -\sin\theta \cdot \delta$
$\frac{\partial x}{\partial x} = -\sin \phi \cdot \sin \theta \cdot \delta \frac{\partial y}{\partial \theta} = \cos \phi \cdot \delta \cdot \sin \theta \frac{\partial z}{\partial \theta} = 0$

Scanned by CamScanner


842 ·							
_	$ \begin{vmatrix} 9g & 9\theta \\ 9x & 9x \end{vmatrix} $	9\(\phi\)	Sino cosp + respected - resinosing				
	92 90 91 91	9& 9A =	sing sing randlose rangla				
	9x 90 93 93	98 94	coso -dsing o				
	Sino(a g $(0 + x^2 s)$) Sino(a g) Sino(a g) Sino(a g) Sino(a g)		(050) - rsino loso loso) •				
	$= x^{2} Sin \theta (Sin^{2}\theta)$ $= x^{2} Sin \theta (to Sin^{2}\theta)$ $= x^{2} Sin \theta (to Sin^{2}\theta)$	(is² Φ+ (os² Φ (cos² φ)) os² Φ+ Sin² Φ)					
06/10/20	26 0 W)	$\frac{\partial(x_3y_3z)}{\partial(x_3y_3z)} = x^2 \sin \theta,$					
***	- 3f x+y+z = u y+ - 2(x,y,z) = - 2(u,vω)	3=V Z=4VW +	nen find the value of				
	2+4+3= u yt	3=V Z=UVW·	, 1				
	a= y u- 2(4+3)	vy= Y-3	Z=UVW				
	x= u-v	y= V- uvw	32 = 10 VW				
	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9n -1100					
	9x = x -1	<u>∂u</u> = 1-uw	Be = NW				
	$\partial w = 0$	3m =-NV	2= UV				
	∂ w	9m	9ω				

							, age	
					1			
4	9n 9x	<u>8x</u>	972 272		1		D	
	9u 9u	9 A 9 A	9m 9n	-	-νω	(– Uw	-uv	
	9m 9a	91 93	<u>9₩</u> <u>93</u>		Vω	U W	UV	
	1	(rum)	X+ Kuux	(-vb/+	rx) I	((1-uw)uv-	+ (u² vw) +1	
			wy-vw4				1264 UV26	
						= uv - u2	- 4444 1444	uy2w
			<u>C</u>		JK.	= UV	+uyz-u	U
			9 (m/2 D(201) 8	$\frac{d}{dx} = uv$			3	
*	Total dif	Jerijagi.o						
	du = <u>Ou</u> Oa	xda :	+ <u>3u</u> + 8y	•	10 7.00	4	2 1	_
	21 u=1	54), a	= x(f) a	ind pla	4=4(t).	then the	total des	auifavii
	of u is	t Ou =	<u>रिप ठीय</u> रिय वीर	9u + <u>9u</u>	dy dt	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	total clea	
	_					x cent de		
1.8	find the	total	DX 6X16H#	depivat	lve of the	re followi	no.	
١.	u= 23+ X	y2 + x2	1+43	e Asther	- (b 12)	× 101(00)	5 n	
2.	M= X Sir				Ċ		r esa	
3.	$\frac{2}{5} = \chi y^2 +$			x= at a	nd y= 2	at		
Ч.	4- xy + y			1 1				
	= -	tost.	y=tsir	nt , z=	T fp +	/ч.	en en	
1-	4= 23+2y2	4x3	ty ³	Total or			PLG.	
	Given u=	x3+xy	2+X2y+	<i>3</i>	114		200	
101	D	iff'n u g	purtially	w.4.4 x	and y		1	
Biories,			-		1-			

	classmate Date Page
	$\frac{\partial x}{\partial t} = 3t^2 + t^2 + 2xt$
	3n = 5xH+x2+3h2
	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + $
7	Be du = (3x2+y2+2xy) dx + (2xy+x2+3y2) dy
a.	$\frac{\partial x}{\partial x} = x \cos \phi \cos \phi$ $\frac{\partial x}{\partial x} = \sin \phi \cos \phi$
	30 = -7 Sino Sing
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{98}{9x = 9x} \frac{90}{9x + 9x} \frac{90}{9x + 9x} \frac{90}{9x} \frac{90}{9x}$
3.	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
	Given $z = xy^2 + x^2y$ when $x = q^2 + and y = 2at$ Differ ear $x = y^2 + 2xy = (2at)^2 + 2(q^2)(2at) = 8a^2t^2$ $\frac{\partial z}{\partial x} = y^2 + 2xy = (2at)^2 + 2(q^2)(2at) = 8a^2t^2$ $\frac{\partial z}{\partial y} = 2xy + x^2 = 2(a^2)(2at) + (at)^2 = 5a^2t^2/(2at)$
	$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial t}$ $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial t}$ $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial t}$
	dt dt

	Classmate	6
	Date	7
C	Page	

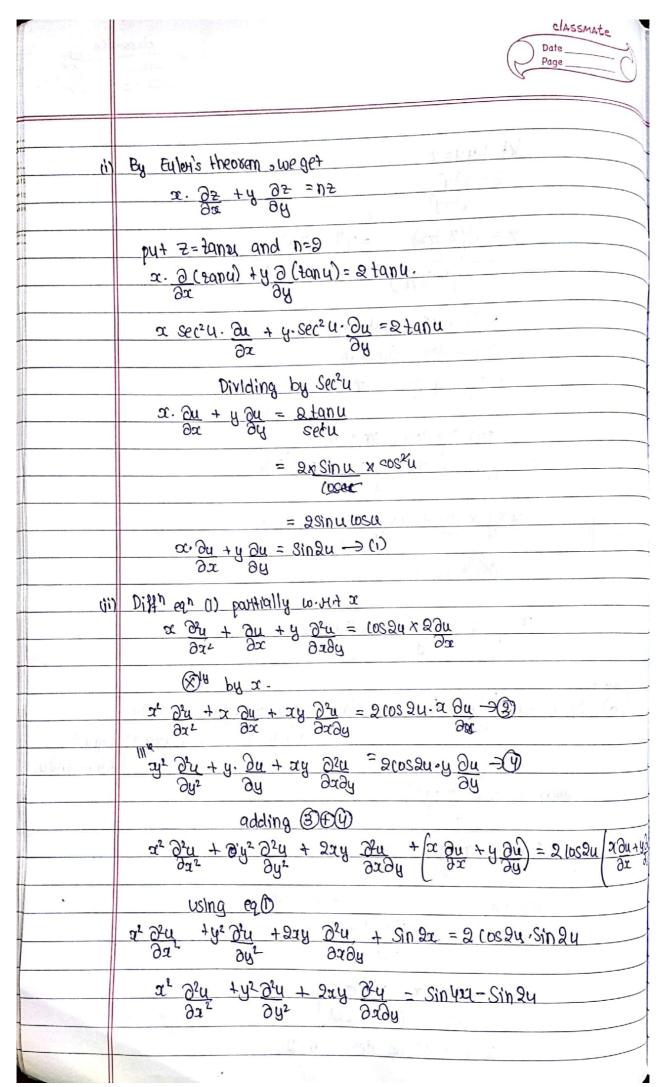
t	w.k.t
	$\frac{d}{dt} = \frac{\partial t}{\partial x} \frac{dx}{dt} + \frac{\partial t}{\partial y} \frac{dy}{dt}$
1	The state of the s
	$= (8a^2t^2)(a) + (5a^2t^2)(2a) = 18a^3t^2$
	gail top the file of the strength to tolk so
<u> </u>	
- ($\frac{\partial u}{\partial x} = y + z = (t \cdot Sint + t)$
	$\frac{\partial u}{\partial y} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right)$
12.00	$\frac{\partial u}{\partial t} = y + x = (t \sin t + t \cos t)$
1	$x = t \cos t$ $y = t \sin t$ $z = t$
•	$\frac{dx}{dt} = 10st - t Sint $ $\frac{dy}{dt} = Sint + t 10st $ $\frac{dz}{dt} = 1$
	m.k·f
. 63	$\frac{dy = \partial y}{dt} \frac{dx}{dt} + \frac{\partial y}{\partial t} \frac{dy}{dt} + \frac{\partial y}{\partial t} \frac{dz}{dt}$
40	$du = (\pm \pi + \pi + \pi) / (\pi + \pi) / (\pi) / (\pi + \pi) / (\pi) /$
	$\frac{dy}{dt} = \left(\frac{TT}{4J2} + \frac{TT}{4J}\right) \left(\frac{1}{J2} - \frac{TT}{4J2}\right) + \left(\frac{TT}{4J2} + \frac{TT}{4J2}\right)$
	$\left(\frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}\right)\left(\frac{1}{4\sqrt{2}}\right)$
	$\frac{dy}{dt} = \left(\frac{\pi}{4\sqrt{2}} + \frac{\pi}{4}\right) \left(\frac{\sqrt{2}}{2\sqrt{2}} + \frac{\pi}{2\sqrt{2}}\right)$
*	Differentiation of composite function.
A Flogloipo	chain rule of partial differentiation.
(8	If u= f(xy) where == f(x0) and y= f(x0). that is u is
	-function of early and a and y one the functions of 800
(8)	then the partial derivative of u is with respect to u and o
A STATE OF THE STA	40 45 BD 40 - 45 BD

	2	Page			
		Estarres 6 - validado 196			
	3u = -4/22 3u	$\frac{1+1}{2}\frac{\partial u}{\partial s} \Rightarrow \frac{7}{2}\frac{\partial u}{\partial t} = -\frac{1}{2}\frac{\partial u}{\partial s} + \frac{7}{2}\frac{\partial u}{\partial s} \Rightarrow \frac{1}{2}\frac{\partial u}{\partial s}$			
e d	Addi	ng (2) (3) and (4), we get			
	72. <u>Du</u> +	y. du + 2 du =0.			
10/10/20		and the first section			
101	A == (a=) 2 a	= u-v and y=uv then P.9			
	(1) (U+V) d3 =				
1					
	in (u4x) 3z =	9r 90			
	By Chain rule				
	90 2 30 30	1 38 Dr (-50)			
	NG 26 26				
	we have.				
	a= U-V	y=uv			
	<u>∂</u> 2 = 1	34 = V			
	du	· δu			
	Da = -1	9n = n			
	1516-136	No. 110 A. 1 Tal. 110 A. 110 A			
	Sub in	(0).			
	$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} + \sqrt{\partial z} - \frac{\partial z}{\partial y}$				
4	$\frac{\partial z}{\partial x} = -\frac{\partial z}{\partial x} + \frac{1}{2}$	uðz -> (3). ∂y			
	(i) $\left(u \times eq^{n}(a) \right) - \left(v \times eq^{n}(a) \right)$				
		07 = 407 + 402 - 4			
	194 144	(4			
	The Con-	$= (\pi + \Lambda) \frac{9\pi}{95}$			

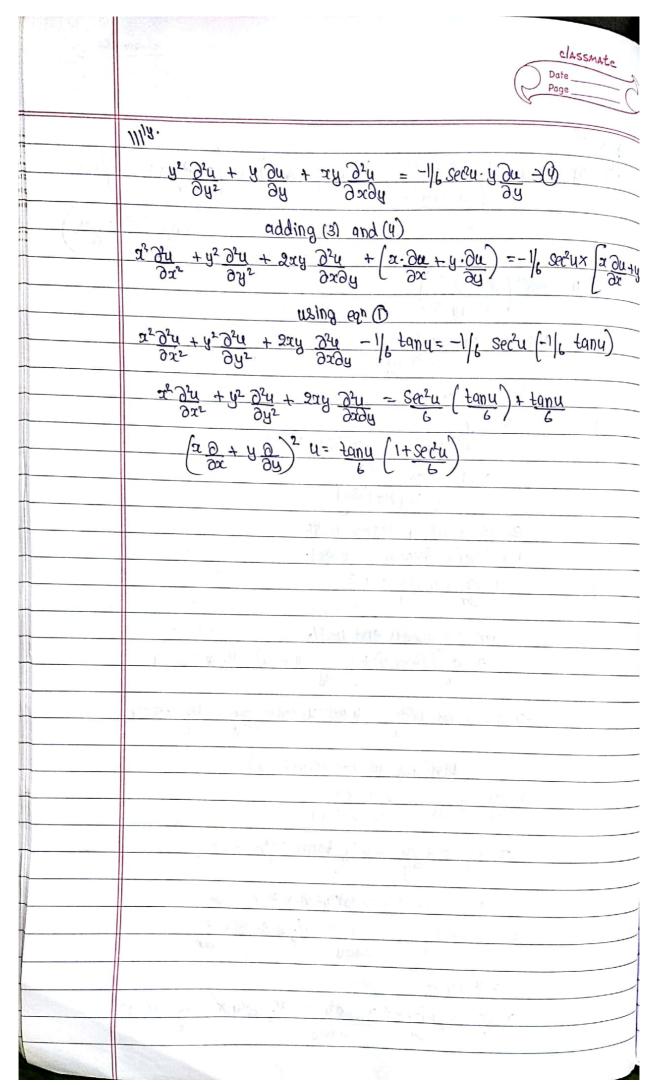
			CIASSMAte Date Page
Cili.	adding eqn g and	3 2 + u 3z 3y 3y 1/.	
(3)	of z= $f(xy)$ when $(3t)^2 + (3t)^2 =$	$2 = u^2 - \gamma^2 \text{and} y = 2uv f$ $4 \left(\frac{\partial +}{\partial x} \right)^2 + \left(\frac{\partial +}{\partial u} \right)^2$	than purove that
<u> </u>	By chain rule of $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}$ $\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}$ $\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}$ we have.	DE & US US +	- CFP 300 production of the control
	3x = 3u $3x = 3u$ $3x = 3v$ $3x = 3v$	$\frac{\partial u}{\partial u} = 2uv$ $\frac{\partial u}{\partial v} = 2uv$	Min sell
	Sub ir 32 = 24 32 + 34 3x	$\frac{\partial u}{\partial y} = 2 \left(u \cdot \partial z + v \cdot \partial z \right)$ $\frac{\partial u}{\partial y} = 2 \left(u \cdot \partial z - v \cdot \partial z \right)$ $\frac{\partial u}{\partial y} = 2 \left(u \cdot \partial z - v \cdot \partial z \right)$	→ <u>③</u>
	Squaring and	d adding eqn @ and @ u fudz + voz 2 + u fu	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	u² (32)	$\frac{1}{2} \int_{0}^{2} \left(\frac{\partial z}{\partial x} \right)^{2} + \frac{1}{2} \left(\frac{\partial z}{$	Sy)
	l c	roan ray) COU!

	DatePage
	$=4\left(u^{2}+v^{2}\right)\left\{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial u}\right)^{2}\right\}$
** (y)	Of z=f(xxy) where x=eusinv and y=eucosv then porove that.
	$\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$
	By chain only of P.D
	$\frac{\partial A}{\partial x} = \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} + \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} $ $\frac{\partial A}{\partial x} = \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} + \frac{\partial A}{\partial x} \cdot \frac{\partial A}{\partial x} $
	we have.
	$3x = e^{ik} \sin v$ $y = e^{ik} \cos v$ $3u = e^{ik} \sin v$ $3u = e^{ik} \cos v$
	$\frac{\partial u}{\partial x} = e^{\mu} \cos v$ $\frac{\partial u}{\partial x} = -e^{\mu} \sin v$
()	Sub in (1)-
1-	$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot e^{u} \sin v + \frac{\partial z}{\partial z} \cdot e^{u} (\cos v) = e^{u} \left(\frac{\sin v \partial z}{\partial x} + \frac{\cos v}{\partial z} \right) \rightarrow (2)$
	$\frac{\partial z}{\partial v} = \frac{\partial t}{\partial x} \cdot e^{V}(\cos v \cdot a - \partial z \cdot e^{V}\sin v = e^{V}\left(\cos v \cdot \partial z\right) - \left(\sin v \cdot \partial z\right) - 3inv \cdot \partial z$
	squarting and adding eqn (9) and (3)
	$\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{2u} \left(\left(\frac{\partial z}{\partial x}\right) + \left(\cos v \frac{\partial z}{\partial y}\right)^2 + \left(\cos v \frac{\partial z}{\partial x}\right) - \sin v \frac{\partial z}{\partial y}\right)$
	$= e^{2\eta} \left\{ \left(\frac{\sin^2 v}{\partial x} \right)^{\frac{1}{2}} + \left(\cos^2 v}{\partial x} \right)^{\frac{1}{2}} + 2 \sin v \cos v \partial z + \partial z \right\} + 2 \sin v \cos v \partial z \partial$
	$\frac{\left(\cos^{2}v\right)\frac{\partial z}{\partial x}+\sin^{2}v\right)^{2}-2\sin v\cos \frac{\partial z}{\partial y}}{\left(\cos^{2}v\right)\frac{\partial z}{\partial x}}.$
	$= e^{2i\eta} \left[\frac{\partial z}{\partial x} \right]^2 \left(\frac{\sin^2 v + \cos^2 v}{\cos^2 v} \right) + \left(\frac{\partial z}{\partial y} \right)^2 \left(\frac{\sin^2 v + (os^2 v)}{\sin^2 v + (os^2 v)} \right)$
	$= e^{2U} \int_{0}^{\infty} \left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial u} \right)^{2} \int_{0}^{\infty} \mathcal{N}$ Scanned by CamScar

Scanned by CamScanner


	Page
*	Homogenous functions and Euler's theorn
*	Homogenous function
	A function $u=f(x,y)$ is said to be homogenous function.
11 5	if t can be expressed as u= xn f(uln) post u= yn g(aly)
	whom n is a degree of homogenous function
	&χ:-
	$U = \frac{3}{3} + \frac{1}{3} = \frac{3}{3} \left(1 + \frac{1}{3} \right)$
	Vaty \(\sqrt{1+4/x} \)
	$= x^{3-\sqrt{2}} \left\{ \frac{1+(y x)^3}{\sqrt{1+(y x)}} \right\}$
	$= u = x^{5/2} $ $\begin{cases} 1 + (y x)^3 \end{cases}$
	14 (4) 2) 11 - W WAR - 30
	= uisa HF of degree n=5/2.
	By Sulois theorem / 2 du + y du/=ny 7 2/6/11.
*	SUBIS ALGORIT.
	If u=f(x5y) is a homogenous function of degree n
	then seem du + y du = nu
(a) - 1/4	0x 08
*	eulers extension theorem:
6 / -	$\frac{\partial^2 y_1}{\partial x_2} + \frac{\partial y_2}{\partial x_1} + \frac{\partial x_1}{\partial x_2} + \frac{\partial x_2}{\partial x_1} = \frac{\partial x_2}{\partial x_2} = = \frac{\partial x_2}$
F. B.	રેલ ² જેવુ ² જેવરેષુ
	(00)
	$\left(\frac{\pi}{2} \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y}\right)^2 y = D(D-1)y$
stalling	1. 20 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Ro y	TO 1 UNG COS 4 - VELLEY
1.	of u= x3+y3 then prove that adu + y de = 184 5/2 u
7.	very de dy
-	$u = x^3 + y^3 = x^3 (H y^3 / x^3)$
1 5	Vaty Va (THE)
J. Die	
	23-1/2 & 1+ (4/x)3
	(JA[4]D)
	A CONTRACT OF LAND
	Scanned by CamSc

	Page
	11= 2513 & 1+ (A/S)3 \$
	U= 25 2 1+ (4/2)3 (
	u is a His of clegred n=512.
	By Euler's theorem.
	2 gr + h.gr = Vr
	=:Sall .
(8)	of u= (=4) 1/3 then prove that 3(x4x+y4x+Z4g)=u.
	u= (=4)13 (284y3)
	$\left(\pi^{3}+y^{3}\right)$
	$= \left\{ \frac{\pi_{s}(1+\lambda_{s})\pi_{3}}{\pi_{s}(1+\lambda_{s})\pi_{3}} \right\}$
	78 (14 43) x3)
	$= \begin{cases} \frac{1}{ x ^2} & \frac{1}{ x ^3} \\ \frac{1}{ x ^3} & \frac{1}{ x ^3} \end{cases}$
	17 (8 x) 0 1/3 (12 -74) 1/3
	$u = x^{1/3} \int \frac{(z x)^4}{1+(y x)^3} \int \frac{1}{1}$
	u is a HoF of degree n=1/3.
1 1	By Euler's theorem.
	20 + y. Ou + 20u = nu = 1/3 u
	•
	= 3(alx+ylly+zllz)=4//.
(3)	fu= x + y + Z then prove that xux+ y uy+ zlz = 0
	4+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+
	$= \frac{1}{2(1+2\pi)} + \frac{1}{2(2\pi)} + \frac{1}{2(2\pi)} + \frac{1}{2(2\pi)}$
190	$\mathbb{Z}(\mathbb{Z}_{[x]})$ $\mathbb{Z}(\mathbb{Z}_{[x]})$ $\mathbb{Z}(\mathbb{Z}_{[x]})$
	C
	$U = x^{\circ} \times \left(\frac{1}{ x ^{\frac{1}{2}} x } + \frac{y x }{ x ^{\frac{1}{2}} x } + \frac{z x }{ x ^{\frac{1}{2}} x } \right)$
	u is a HF of degree n=0


	Date Page
	By Eulon's theorem
	x du + y du + 2 du = nu dx dy dt
	= 6xy.
	$\frac{x \partial u + y \partial u + z \partial u}{\partial x} = 0$
(y)	of u = log (x4yy) then prove that adu + y du = 3.
	Given $U = \log \left(\frac{xyyy}{x+y} \right)$
	2+4,
	let e4= 2 ∴ Z= x4+ y4
	x+y
	$\frac{z}{z} = \frac{x^4 \left(\frac{1+y^4 x^4}{2} \right)}{1+\left(\frac{y x}{2} \right)^4}$
	= is a H-F of degree n=3//
	By Euler's theorem.
	$3x \frac{9h}{3 \cdot 9^5 + 8 \cdot 9^5} = 105$
	put ≥=eu and n=3.
	3. 0 (e4) 4 y 0 (e4) = 3xe4
	3x 3y 3y = 3e4
	Dividing by e4
20-0	3x 8y = 3.
£ (3)	of u= p(x3y3) then p.9 x du + y du = 4u logy.
	$y = e^{\frac{\alpha^3 y^3}{\alpha^2 + y^2}}$
	x^2+y^2

	classmate	6
	Date Page	
R		

	Date
	let logu= ?
	$\frac{2 - \chi^3 y^3}{\chi^2 + y^2}$
	$z = x^{6} \left(\frac{y^{3}}{x^{3}} \right) = x^{4} \cdot \left(\frac{y}{x} \right)^{3} $ $= x^{4} \cdot \left(\frac{y}{x} \right)^{2}$ $= x^{4} \cdot \left(\frac{y}{x} \right)^{2}$ $= x^{4} \cdot \left(\frac{y}{x} \right)^{2}$
	$\frac{1}{2^2\left(1+\frac{y^2}{x^2}\right)}\left(1+\frac{(\frac{y}{x})^2}{x^2}\right)$
	ZisaHF of degree n=4.
	By Gulen's theorem.
	$\frac{2 \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n7}{2}$
	put Z = logu and n=4.
	2. 3 (10g4) +4 3 (10g4) =4 log4.
	$\frac{u}{\alpha \times 1} \times \frac{\partial x}{\partial u} + \frac{\partial x}{\partial x} = \frac{1}{2} \log u$
	Sly by u
	x. du + y-du = 4 u log u//,
**	¥
*(6)	If u= tan (x3+y3) then prove that (1) x Ux + y Uy = Sin &u.
<u> </u>	(ii) x2 Uzz + 2xy Uxy +y2 Uyy =
	Sin 4u-sin 2u.
	siven $u = \frac{1}{2}an^{3}\left(\frac{\pi^{3}+y^{3}}{x-y}\right)$
Basic for	1an 11- 73+103
37	$\frac{1}{x} = \frac{x^3 + y^3}{x - y}$
	let tan u= Z
	$7 = \pi^{3} + \mu^{3}$ $\pi^{5} (1 + \frac{\mu^{3}}{4} \pi^{3})$
	$Z = \frac{\pi^{3} + y^{3}}{\pi^{4}} = \frac{\pi^{5} (1 + \frac{y^{3}}{\pi^{3}})}{\pi^{(1-y)}}$
	$= x^{2} \left\{ \frac{1+(y x)^{3}}{1-(y x)} \right\}$
550	
N. C.	zis a HF of degree n=2

	Tage
400	36
(#)	of $u = (\cos z^{\frac{1}{2}} / \frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}})$ then prove that $(x \cdot \frac{\partial}{\partial x} + y \cdot \frac{\partial}{\partial y})^2 u =$
	$\frac{2anu}{b}\left(1+\frac{sec^2u}{b}\right)$
4 n	the state of the s
	$u = losec^{-1}\left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}\right)$
11	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$z = x^{1/6} $ $\frac{9 x ^{1/2}}{1+(9 x)^{1/3}}$
	z is a HF of degree n=1/6
	By Eulon's theorem, we get.
	$\frac{\alpha \cdot \partial z + y \partial z}{\partial \alpha} = n z$
	put $z = losec u$ and $n = 1/6$ $\frac{\partial}{\partial x} \left(losec u + y \partial (losec u) = 1/6 + losec u \right)$
	-2 cosecu. cot u. du - y cosecu. cotu du = 1/6 cosecu.
	Dividing by (-losecu-lotu)
	T. Du + y Du = 16 cosecu - cosecu·colu
	2. du + y du = - 1/6 tanu →0
	Diffneon O pourtally wint I.
	$\frac{3x^{2}}{3x^{2}} + \frac{3u}{3x} + \frac{3^{2}u}{3x^{2}} = -\frac{1}{6} \times \frac{3u^{2}}{4} \times \frac{3u}{3x}.$
	®ly by x
	$\frac{x^2 \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial x} = -\frac{1}{6} \frac{2c^2 u \times x \frac{\partial u}{\partial x} \rightarrow 3}{2x}$
Tiple .	

| Jai Sri Gurudev||
S. J. C. INSTITUTE OF TECH | DLOGY, CHICKBALLAPUR

Department of Mathematics

Lecture Notes

Calculus & Linear Agebra (18MAT11)

repared By:

Burushotham.P

Assistant Pr#essor

SJC Institute of Technology

mail d: ppurushothamp48@gmail.com

Phone: 8197481658

CALCULUS AND LINEAR ALGEBRA

WODULE -03

INTEGRAL CALCULUS

Note :-

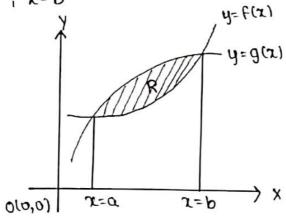
$$\int x^n dx = \frac{x^{n+1}}{x^{n+1}}$$

Sinxdr = - Cosx

Scosnar = Sinz

$$\int e^{\alpha x} = \frac{e^{\alpha x}}{\alpha}$$

Su.v dr = u svdr - s(u' svdr) dr


Multiple Integrals:

1. Intergral $\int_{-\infty}^{b} f(x) dx$ can be described as the

length of a curve y = f(x) from x = a to x = b

also it is called the line integral.

a. Integral $\int_{a}^{b} \int_{y=f(x)}^{g(x)} \phi(x,y) dy dx$ can be described as region of surface bounded between y=f(x), y=g(x) and x=a, x=b

3. In Integral,

$$I = \int_{a}^{b} \int_{a}^{g(x)} \int_{a}^{h_{2}(x,y)} \phi(x,y,z) dz dy dx \text{ used to}$$

$$x=a \quad y=f(x) \quad z=h;(x,y)$$

calculate the volume between the mentioned bound - aries

1. Evaluate
$$\int_{0}^{1} \int_{0}^{2x^{2}} (x^{2} + y^{2}) dy dx$$

Let $I = \int_{0}^{1} \int_{0}^{2x^{2}} (x^{2} + y^{2}) dy dx$

$$= \int_{0}^{1} \left[\int_{0}^{2x^{2}} (x^{2} + y^{2}) dy \right] dx$$

$$= \int_{0}^{1} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y=0}^{2x} dx$$

$$= \int_{0}^{1} \left[x^{3} + \frac{x^{3}}{3} \right] dx$$

$$= \int_{0}^{1} \frac{4x^{3}}{3} dx$$

$$= \frac{4}{3} \int_{0}^{1} x^{3} dx$$

$$= \frac{4}{3} \left[\frac{x^{4}}{4} \right]_{0}^{1}$$

$$= \frac{1}{3} \left[x^{4} \right]_{0}$$

$$= \frac{\partial a}{\partial x^{2}} \left\{ \left[b \tau^{2} + \frac{b^{3}}{3} + \frac{b a^{2}}{3} \right] - \left[-\frac{b x^{2}}{1} - \frac{b^{3}}{3} - \frac{b a^{2}}{3} \right] \right\} dx$$

$$= \frac{\partial a}{\partial x^{2}} \left[\left[a b x^{2} + \frac{a b^{3}}{3} + \frac{a b a^{2}}{3} \right] dx$$

$$= \frac{\partial a}{\partial x^{2}} \left[\left[x^{2} + \frac{b^{2}}{3} + \frac{a^{2}}{3} \right] dx$$

$$= \frac{\partial a}{\partial x^{2}} \left[\left[x^{2} + \frac{b^{2}}{3} + \frac{a^{2}}{3} \right] dx$$

$$= \frac{\partial a}{\partial x^{2}} \left[\left[\frac{x^{3}}{3} + \frac{b^{2}}{3} + \frac{a^{2}}{3} \right] - \left[-\frac{c^{3}}{3} - \frac{c b^{2}}{3} - \frac{c a^{2}}{3} \right] \right\}$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{c a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{b^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{a^{2} a^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{a^{2} a^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{a^{2}}{3} + \frac{a^{2} a^{2}}{3} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{a^{2} a^{2}}{3} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}} \right]$$

$$= \frac{\partial a}{\partial x^{2}} \left[\frac{\partial a}{\partial x^{2}} + \frac{\partial a}{\partial x^{2}}$$

$$= \int_{2\pi-1}^{1} \int_{1\pi0}^{2\pi} (4\pi x + 3\pi^{2}) dx dx$$

$$= \int_{2\pi-1}^{1} (4\pi x + 3\pi^{2}) dx dx$$

$$= \int_{2\pi-1}^{1} (4\pi x + 3\pi^{2}) dx$$

$$= \int_{2\pi-1}^{1} (4\pi x + 3$$

$$\begin{aligned}
&= \int_{x=0}^{a} e^{2x} \int_{y=0}^{x} e^{3y} \, dy \, dx - \int_{x=0}^{a} e^{1} \int_{y=0}^{x} e^{y} \, dy \, dx \\
&= \int_{x=0}^{a} e^{2x} \int_{y=0}^{x} e^{3y} \, dy \, dx - \int_{x=0}^{a} e^{x} \int_{y=0}^{x} e^{y} \, dy \, dx \\
&= \frac{1}{2} \int_{0}^{a} e^{2x} \left[\frac{2^{2y}}{2^{2y}} \right] dx - \int_{0}^{a} e^{x} \left[\frac{2^{2y}}{2^{2y}} - \frac{2^{x}}{2^{x}} \right] dx \\
&= \frac{1}{2} \left[\frac{e^{4x}}{4} - \frac{e^{2x}}{2^{3}} \right] dx - \left[\frac{e^{2x}}{2^{3}} - \frac{e^{x}}{2^{3}} \right] dx \\
&= \frac{1}{2} \left\{ \frac{e^{4x}}{4} - \frac{e^{2x}}{2^{3}} + \frac{1}{4} \right\} - \left\{ \frac{e^{2x}}{2^{3}} - \frac{e^{x}}{2^{3}} \right\} dx \\
&= \frac{e^{4x}}{2} + \frac{e^{2x}}{4} + \frac{1}{8} - \frac{e^{2x}}{2^{3}} + e^{x} - \frac{1}{2} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{8} \\
&= \frac{e^{4x}}{8} - \frac{3}{4} e^{2x} + e^{x} - \frac{3}{4} e^{x} + e^{x} - \frac{3}{4} e^{x} - e^{x} - \frac{3}{4} e^{x} + e^{x} - \frac{3}{4} e^{x} - e^{x} - \frac{3}{4} e^{x} + e^{x} - \frac{3}{4} e^{x} - e^{x} - e^{x} - \frac{3}{4} e^{x} - e^{$$

$$I = \int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} \int_{z=0}^{\sqrt{\alpha^{2}-x^{2}-y^{2}}} \frac{1}{(x^{2}-x^{2}-y^{2})^{2}} = z^{2} dz dy dx$$

$$Let K = \int_{\alpha^{2}-x^{2}-y^{2}}^{\sqrt{2}} \int_{x=0}^{x} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} \int_{z=0}^{x} \frac{1}{(x^{2}-x^{2})^{2}} dz dy dz$$

$$\int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} \left[\sin^{-1}(z/k) \right]_{z=0}^{k} dy dx$$

$$= \int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} \left[\sin^{-1}(z/k) - \sin^{-1}(z/k) \right] dy dx$$

$$= \int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \int_{x=0}^{q} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \int_{x=0}^{q} \int_{x=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \int_{x=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \int_{x=0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$=$$

$$= \frac{\pi a^{2}}{2} \int_{0}^{\pi/2} \cos^{2}\theta d\theta$$

$$= \frac{\pi a^{2}}{4} \left\{ \theta + \frac{\sin 2\theta}{2} \right\}_{0}^{\pi/2}$$

$$= \frac{\pi a^{2}}{4} \left\{ \theta + \frac{\sin 2\theta}{2} \right\}_{0}^{\pi/2}$$

$$= \frac{\pi a^{2}}{4} \left\{ \frac{\pi}{2} + 0 \right\} - (0 + 0)$$

$$= \frac{\pi^{2}a^{2}}{4} \left\{ \frac{\pi}{2} + 0 \right\} - (0 + 0)$$

$$= \frac{\pi^{2}a^{2}}{4} \left\{ \frac{\pi}{2} + 0 \right\} - (0 + 0)$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2}}} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \frac{1}{\sqrt{a^{2} - x^{2} - y^{2} - z^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2}}} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \frac{1}{\sqrt{a^{2} - x^{2} - y^{2} - z^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2}}} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \frac{1}{\sqrt{a^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{x^{2} - x^{2} - y^{2}}} dz dy dx$$

$$= \int_{0}^{1} \int$$

$$\frac{\pi}{3} \int_{1}^{1} \int_{1}^{\sqrt{\alpha^{2}-x^{2}}} dy dx$$

$$\frac{\pi}{3} \int_{1}^{1} \left[y \right]_{0}^{\sqrt{\alpha^{2}-x^{2}}} dx$$

$$= \frac{\pi}{3} \int_{0}^{1} \sqrt{\alpha^{2}-x^{2}} dx$$
Let $x = \alpha \sin\theta \Rightarrow \theta = \sin^{-1}(x/\alpha)$

$$dx = \alpha \cos\theta d\theta$$
UL: $x = 0 \Rightarrow \theta = 0$

$$= \frac{\pi}{3} \int_{0}^{\pi/2} \sqrt{1-\sin^{2}\theta} \cdot \cos\theta d\theta$$

$$= \frac{\pi}{3} \int_{0}^{\pi/2} \sqrt{1-\sin^{2}\theta} \cdot \cos\theta d\theta$$

$$= \frac{\pi}{3} \int_{0}^{\pi/2} \left(\frac{1-\cos\theta}{3} \right) d\theta$$

$$= \frac{\pi}{3} \left[0 + \frac{\sin 2\theta}{3} \right]_{0}^{\pi/2}$$

$$= \frac{\pi}{4} \left[\frac{\pi}{3} + 0 \right] - (0+0)$$
I = $\frac{\pi^{3}}{8}$
8. Evaluate
$$\int_{0}^{\alpha} \sqrt{\alpha^{2}-x^{2}-y^{2}} \sqrt{\alpha^{2}-x^{2}-y^{2}}$$
 $xyz dz.dydx$
I = $\int_{0}^{\alpha} \sqrt{\alpha^{2}-x^{2}} \sqrt{\alpha^{2}-x^{2}-y^{2}}$
 $xyz dz.dydx$

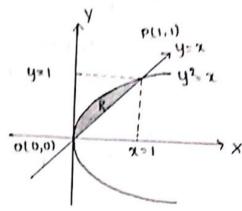
$$\begin{aligned}
&= \frac{1}{18} \left\{ \frac{e}{a_e} - \frac{2}{a_e} + \frac{2}{a_e} \right\} \Rightarrow 1 = \frac{48}{a_e} \\
&= \frac{1}{18} \left\{ \frac{e}{a_e} - \frac{2}{a_e} + \frac{2}{a_e} \right\} \Rightarrow 1 = \frac{48}{a_e} \\
&= \frac{1}{18} \left\{ \frac{e}{a_e} - \frac{2}{a_e} + \frac{2}{a_e} \right\} \Rightarrow 1 = \frac{48}{a_e} \\
&= \frac{1}{18} \int_{a}^{0} \left(\frac{2}{a_1} - \frac{2}{a_2} + \frac{2}{a_1} \right) + \frac{2}{a_1} \left(\frac{2}{a_2} - \frac{2}{a_2} \right) + \frac{2}{a_2} \left(\frac{2}{a_2} - \frac{2}{a_2} \right) + \frac{2}{a_1} \left(\frac{2}{a_2} - \frac{2}{a_2} \right) + \frac{2}{a_2} \left(\frac{2}{a_2} - \frac{2}{a_2} \right) + \frac{2}$$

- => change of order of Integeration:
- Integeration.

$$\Rightarrow I : \int_{0}^{1} \int_{0}^{\sqrt{1}} xy \, dy \, dx$$

here x varies $as x=0, x=1 \rightarrow 0$

and then y varies as year


and y= II => y2 = x -> 2

@ B. O mort

.. By the change of order of Integral

$$I = \int_{y=0}^{1} \int_{x=y_1}^{y} xy \, dxdy$$

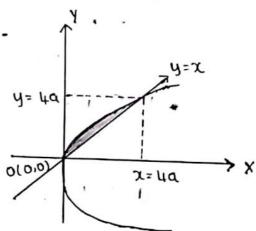
$$= \int_{y=0}^{1} y \left(\frac{x^{1}}{2}\right)_{y^{2}}^{y} dy$$

$$=\frac{1}{a}\left[\frac{6-4}{au}\right]$$

3. Evaluate by change of order of Integtration.

$$J = \begin{cases} x^2 & \text{dy dx} & \text{a. a.} \\ x^2 & \text{dy dx} & \text{a. a.} \end{cases}$$

$$I = \begin{cases} x^2 & \text{dy dx} & \text{a.} \end{cases}$$


$$x = 0 \quad y = x$$

Here , x=0, x=4a

$$\rightarrow 0$$

$$\rightarrow 2$$

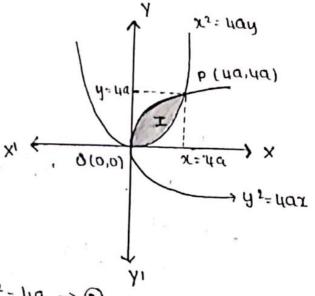
$$\begin{array}{c}
\Rightarrow y = 0, y = 4\alpha \\
I : \int_{4\alpha}^{4\alpha} \int_{x=y}^{y^{2}/4\alpha} x^{3} dx dy \\
= \int_{3}^{4\alpha} \int_{y=0}^{4\alpha} \left[\frac{y^{2}}{4\alpha} \right]^{3} - y^{3} dy \\
= \frac{1}{3} \int_{y=0}^{4\alpha} \left[\frac{y^{2}}{4\alpha} - y^{3} \right] dy \\
= \frac{1}{3} \left[\frac{y^{2}}{1 \times 64\alpha^{3}} - \frac{y^{4}}{4\alpha} \right]^{4\alpha} dy \\
= \frac{1}{3} \left[\frac{(4\alpha)^{2}}{1 \times 64\alpha^{3}} - \frac{(4\alpha)^{4}}{4\alpha} \right]^{4\alpha} \\
= \frac{1}{3} \left[\frac{(4\alpha)^{2}}{1 \times 64\alpha^{3}} - \frac{(4\alpha)^{4}}{4\alpha} \right]^{4\alpha} \\
= \frac{1}{3} \left[\frac{(4\alpha)^{2}}{1 \times 64\alpha^{3}} - \frac{(4\alpha)^{4}}{4\alpha} \right]^{4\alpha} \\
= \frac{1}{3} \left[\frac{(4\alpha)^{2}}{1 \times 64\alpha^{3}} - \frac{(4\alpha)^{4}}{4\alpha} \right]^{4\alpha} \\
= \frac{1}{3} \left[\frac{356\alpha^{4} - 1792}{38} \right]^{4\alpha} \\
= \frac{1}{3} \cdot \alpha^{4} \left[\frac{356 - 1792}{38} \right]^{4\alpha} \\
= \frac{\alpha^{4}(-1536)}{38 \times 3} \\
= \frac{$$

$$= \frac{1}{3} \left[\frac{1}{(h_2)} \frac{3h}{h_1} - \frac{3h}{h_1} \right]$$

$$= \frac{1}{3} \left[\frac{1}{(h_2)} \frac{3h}{h_1} - \frac{3h}{h_2} \right]$$

$$= \frac{1}{3} \left[\frac{3h}{h_1} \right] \left[\frac{3h}{h_2} - \frac{3h}{h_2} \right]$$

$$= \frac{1}{3} \left[\frac{3h}{h_1} \right] \left[\frac{3h}{h_2} - \frac{3h}{h_2} \right]$$


$$I = \frac{64a^4}{7}$$
 sq units

I to star by changing the 3. Evaluate x2/4a

order of integration.

$$I = \int_{1}^{1} \int_{1}^{1} xy \, dy \, dx$$
 $x_1 \leftarrow \int_{1}^{1} \int_{1}^{1} xy \, dy \, dx$

$$x=0$$
, $x=4a$ and $y=\frac{x^2}{4a}$

The change of order of integration we have

$$I = \int_{0}^{4a} \int_{0}^{a\sqrt{ay}} xy \, dxdy$$

$$y=0 \quad x=y^{2}/4a$$

$$= \frac{1}{2} \left\{ \frac{4\alpha y^3}{3} - \frac{y^6}{6x/6\alpha^2} \right\}_0^{4\alpha}$$

$$= \frac{1}{3} \left\{ \frac{4a}{3} y^3 - \frac{y^6}{96a^2} \right\}_{0}^{4a}$$

$$= \frac{1}{2} \left[\frac{4\alpha}{3} \left[\frac{4\alpha}{3} \left[\frac{4\alpha}{96\alpha^2} \right] \right]$$

$$= \frac{1}{2} \left[\frac{1}{3} - \frac{16\alpha^3}{96\alpha^2} \right]$$

$$= \frac{(4\alpha)^4}{3} \left(\frac{1}{3} - \frac{1}{6} \right)$$

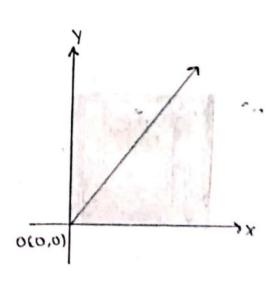
$$= \frac{(ya)^4}{2} \times \frac{1}{6}$$

$$I = \frac{64a^4}{8}$$

4. Evaluate
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$$

I =
$$\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e-y}{y} dy dx$$

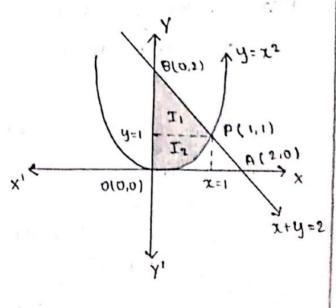
Here a varies from


0 too and y varies from

n to co

integration.

$$I = \int_{x=0}^{\infty} \int_{y=1}^{\infty} \frac{e^{-y}}{y} dy dx$$


$$I = \int_{y=0}^{\infty} \int_{x=0}^{y} \left[\frac{e^{-y}}{y} \right] dx dy$$

5. Evaluate \(\begin{array}{c} 3^{-2} \\ 2y \\ dy \\ dx \\ using \\ change \\ of \\ or \\ der \end{array}

of integeration.

a varies from 0 to 1 and

$$x + y = \emptyset$$

$$\frac{x}{a} + \frac{y}{a} = \emptyset$$
By change of Order of integration the bounda

$$I = \int_{y=0}^{1} \int_{x=0}^{\sqrt{13}} xy \, dx \, dy + \int_{x=0}^{2} \int_{x=0}^{2-1} y \, dx \, dy$$

$$I = I_{1} + I_{2}$$

$$I = \int_{y=0}^{1} y \left(\frac{x^{2}}{2} \right)_{0}^{\sqrt{19}} \, dy$$

$$= \frac{1}{2} \int_{y=0}^{1} y^{2} \, dy$$

$$= \frac{1}{2} \left(\frac{y^{3}}{3} \right)_{0}^{1}$$

$$= \frac{1}{2} \left(\frac{1}{3} - 0 \right)$$

$$I_{1} = \frac{1}{6}$$

$$I_{2} = \int_{y=1}^{2} xy \, dx \, dy$$

$$= \int_{y=1}^{2} y \left(\frac{x^{2}}{2} \right)_{0}^{2-1} \, dy$$

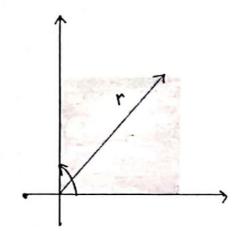
$$= \frac{1}{2} \int_{y=1}^{2} y \left((2-y)^{2} \, dy \right)$$

$$= \frac{1}{2} \int_{y=1}^{2} y \left((2-y)^{2} \, dy \right)$$

$$= \frac{1}{2} \int_{y=1}^{2} y \left((2-y)^{2} \, dy \right)$$

$$= \frac{1}{2} \int_{y=1}^{2} y \left((2-y)^{2} \, dy \right)$$

$$I = \int_{\theta=0}^{\pi/2} \int_{0}^{\infty} e^{-\tau^{2}} \tau \, d\tau \, d\theta \rightarrow \mathfrak{D}$$


$$I = \int_{\theta=0}^{\pi I_2} \int_{\theta=0}^{\infty} e^{-t} \frac{1}{2} dt d\theta$$

$$\theta b. tb^{f-g} \int_{0=t}^{\infty} \int_{0=\theta}^{\pi/2} \int_{0=\theta}^{\infty} e^{-t} dt. d\theta$$

$$=\frac{8}{1}\int_{\pi/3}^{\theta=0}\left(\frac{-1}{6-t}\right)\int_{\infty}^{t=0}q\theta$$

$$= \frac{1}{2} \int_{\pi/2}^{\pi/2} \left[e^{-t} \right] \int_{0}^{\infty} d\theta$$

$$= \frac{2}{1} \int_{\theta=0}^{\pi} \left[e^{-\infty} - e^{0} \right] d\theta$$

$$= \frac{1}{3} \int_{0}^{\pi/2} 1 \, d\theta$$

$$= \frac{1}{3} \left[\Theta \right]_{0}^{\pi/2}$$

$$= \frac{1}{3} \left[\frac{\pi}{3} - 0 \right]$$

$$= \frac{1}{3} \left[\frac{\pi}{3} - 0 \right]$$

$$= \frac{1}{3} \left[\frac{\pi}{3} - 0 \right]$$

$$= \frac{\pi}{3} \int_{0}^{\infty} e^{-\frac{\pi}{3}} e^{-\frac{\pi}{3}} dy dx = \frac{\pi}{4} \longrightarrow \mathfrak{D}$$

$$= \int_{0}^{\infty} e^{-\frac{\pi}{3}} dx \int_{0}^{\infty} e^{-\frac{\pi}{3}} dy = \frac{\pi}{4} \longrightarrow \mathfrak{D}$$

$$= \int_{0}^{\infty} e^{-\frac{\pi}{3}} dx \int_{0}^{\infty} e^{-\frac{\pi}{3}} dy = \frac{\pi}{4}$$

$$= \int_{0}^{\infty} e^{-\frac{\pi}{3}} dx \int_{0}^{\infty} e^{-\frac{\pi}{3}} dx = \frac{\pi}{4}$$

$$= \int_{0}^{\infty} e^{-\frac{\pi}{3}} dx = \sqrt{\frac{\pi}{3}}$$

$$= \int_{0}^{\infty} e^{-\frac{\pi}{3}} d$$

$$I = \int_0^\alpha \int_y^\alpha \frac{x}{x^2 + y^2} dx dy$$

$$I = \int_{0}^{\alpha} \int_{x=y}^{\alpha} \frac{x}{x^{2}+y^{2}} dx dy$$

:. By change the order of integration, we have.

$$I = \int_{0}^{\alpha} \int_{y=0}^{x} \frac{x}{x^{2} + y^{2}} dy dx$$

$$= \int_{0}^{\alpha} \int_{y=0}^{x} \frac{x}{x^{2} + y^{2}} dy dx$$

$$= \int_{0}^{\alpha} \int_{y=0}^{x} \frac{x}{x^{2} + y^{2}} dy dx$$

$$= \frac{\pi}{4} \int_{0}^{\alpha} 1 dx$$

$$= \frac{\pi}{4} [x]_0^{\alpha}$$

$$I = \frac{\pi a}{1}$$

Here x varies from 0 to $\sqrt{\alpha^2 - xy^2}$ $= 2 \cdot x = \sqrt{\alpha^2 - y^2}$ $x^2 = \alpha^2 - y^2$

y varies from 0 to a

$$I = \int_{0}^{\pi/2} \sin \theta \, d\theta \int_{0}^{\alpha} \tau^{3} d\tau$$

$$\theta = 0 \qquad \tau = \theta$$

$$= -\left[\cos \frac{\pi}{2}\right] - \left[\frac{\tau^{4}}{4}\right]_{0}^{\alpha}$$

$$= -\left[\cos \frac{\pi}{2}\right] - \cos \theta - \left[\frac{\alpha^{4}}{4}\right]$$

$$= (0-1)\frac{\alpha^{4}}{4}$$

$$I = \frac{\alpha^{4}}{4}$$

APPLICATIONS

1. Find the area between the parabolas, $y^2 = 4ax$, $x^2 = 4ay$

The area between the given two parabolas $y^2 = uax$, $x^2 = uay$ can be evaluated as

$$A = \iint dx dy$$

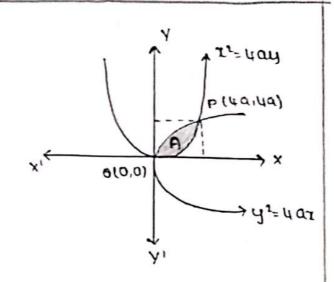
$$A = \iint dx dy$$

$$A = \iint dx dy$$

$$A = \iint dx dx$$

$$A = \iint dx$$

$$A = \iint dx dx$$


$$A = \iint dx$$

$$A = \iint dx dx$$

$$A = \iint dx dx$$

$$A = \iint dx$$

$$A =$$

=
$$\sqrt{2} \left\{ \sqrt{12} \right\}_{0}^{40} = \frac{1}{40} \left\{ \sqrt{12} \right\}_{0}^{40}$$

$$T = \int_{-\infty}^{\infty} \int_{-\infty}^{\sqrt{\alpha^2 - x^2}} (x^2 + y^2) dx dy \Rightarrow 0$$

x varies from
$$x = 0$$
 to $x = \sqrt{a^2 - y^2}$

It is a circle having centre (0,0) will radius 'a' lies from 0 to a

$$I = \int_{\pi/2}^{\pi/2} \int_{0}^{\alpha} r^{2} (\cos^{2}\theta + \sin^{2}\theta) r dr d\theta$$

$$\int_{\mu \setminus S} \left(\frac{h}{s \cdot h} \right)_{\alpha}^{0} d\theta$$

$$= \frac{\alpha 4}{4} \int_{1}^{\pi/2} 1. d\theta$$

$$T = \frac{\alpha^{4}}{4} \left(\frac{\pi}{8} - 0 \right)$$

$$T = \frac{\pi \alpha^{4}}{8}$$

$$S. \quad \text{Evaluate} \quad \int_{0}^{\alpha} \int_{0}^{\sqrt{\alpha^{2}-x^{2}}} y^{2} \sqrt{x^{2}+y^{2}} \, dx \, dy$$

$$I = \int_{x=0}^{\alpha} \int_{y=0}^{\sqrt{\alpha^{2}-x^{2}}} y^{2} \sqrt{x^{2}+y^{2}} \, dx \, dy$$

$$Vanies \quad \text{from} \quad x=0, \text{ to} \quad x=\alpha \quad x^{4} \qquad 0 \quad x^{2}+y^{2}+\alpha^{2}$$

$$y \quad \text{Vanies} \quad \text{from} \quad y=0 \quad \text{to} \sqrt{\alpha^{2}-x^{2}}$$

$$\text{Let} \quad x = r \cos \theta, \quad y = r \sin \theta, \quad \text{did}y = r \sin \theta, \quad y$$

$$I = \int_{0}^{\pi/x} \int_{0}^{\alpha} y^{2} \sqrt{x^{2}+y^{2}} \, dx \, dy$$

$$= \int_{0}^{\pi/x} \int_{0}^{\alpha} y^{2} \sqrt{x^{2}+y^{2}} \, dx \, dy$$

$$= \int_{0}^{\pi/x} \int_{0}^{\alpha} r^{2} \sin^{2}\theta \sqrt{r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta} \cdot r \, dr \, d\theta$$

$$= \int_{0}^{\pi/x} \int_{0}^{\alpha} r^{2} \sin^{2}\theta \, dr \, d\theta$$

$$= \int_{0}^{\pi/x} \int_{0}^{\alpha} r^{2} \sin^{2}\theta \, dr \, d\theta$$

$$= \int_{0}^{\pi/x} \sin^{2}\theta \, dr \, d\theta$$

$$= \left[\frac{\alpha^5}{5} - 0\right] \left[\frac{1}{3} \cdot \frac{\pi}{3}\right]$$

$$I = \frac{\pi a^5}{a^0}$$
 sq. units

3. Evaluate change of order of integral \sum_{10} \sqrt{122} \langle \sqrt{122} \langle \quad \text{122} \langle \quad \quad \text{122} \langle \quad \quad \text{122} \langle \quad \quad \quad \text{122} \langle \quad \quad

Let x=rcoso, y=rsino

then x varies from x= 0 to a

y varies from y=0 to y= Ja2-x2

$$I = \int_{0}^{\pi} \int_{0}^{\alpha} \sqrt{x^{2}+y^{2}} \, dy \, dx$$

$$\theta = \int_{0}^{\pi} \int_{0}^{\alpha} r \, dr \, d\theta$$

$$\int_{0}^{\pi} \left(\frac{3}{3} \right)_{0}^{\alpha} d\theta$$

$$= \frac{\alpha^3}{3} \left[\pi - 0 \right]$$

$$I : \frac{\pi a^3}{3}$$

(4) use double integration to find the area of

a ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and hence find the area

of the circle $\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = \Omega^2$.

 \Rightarrow Given the ellipse $x^2 + y^2 = a^2 \rightarrow 0$

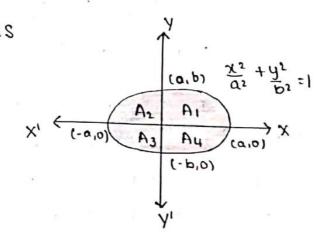
covered the area with the co-ordinate axis as shown in the diagram.

:. The area of the ellipse is

=> A = 4
$$\int_{x=0}^{a} \int_{y=0}^{b/a} \sqrt{a^2-x^2}$$

$$A = 4 \int_{0}^{a} \left[4\right]_{0}^{\frac{a}{2}\sqrt{a^{2}-x^{2}}} dx$$

=
$$4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} dx$$


$$A = \frac{4b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} dx \longrightarrow 2$$

Let x = a sin 0 => 0 = sin (x/a)

$$\underline{\pi} = \theta \ (= D = x : J.U$$

$$\therefore A = \frac{4b}{a} \int_{0}^{\pi/2} \sqrt{a^{2} - a^{2} \sin^{2}\theta} \quad a \cos\theta \, d\theta$$

$$= \frac{4b}{a} \int_{0}^{\pi/2} a \sqrt{1 - \sin^{2}\theta} \cdot a \cos\theta \, d\theta$$

$$= 40 \int_{0}^{\pi / 2} a \cos^{2} \theta d\theta$$

$$= 40 \int_{0}^{\pi / 2} \left[\frac{1 + \cos \theta}{a} \right] d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

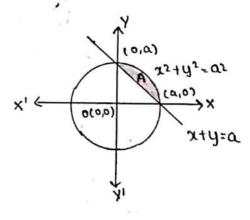
$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int_{0}^{\pi / 2} (1 + \cos 2\theta) d\theta$$

$$= 20 \int$$

 $A = \pi$ ab Sq units when b = a, then the given ellipse becomes a Circle $x^2 + y^2 = a^2$ and its area is


A = TT x axa = TT a2 Sq units

- 5. Find the area by double integration between the circle $x^2 + y^2 = \mathbb{R}^2$ and to the straight line x + y = a. Given that the straight line cut, the x axis at (a_10) and y = axis at (0,a)
- :. The area between the circle $n^2+y^2=a^2$ and the Straight line x+y=a in $A=\int dx dy$

$$A = \begin{cases} \alpha & \sqrt{\alpha^2 - x^2} \\ 0 & y = \alpha - x \end{cases}$$

$$= \begin{cases} \alpha & \sqrt{\alpha^2 - x^2} \\ y = \alpha - x \end{cases}$$

$$= \begin{cases} \alpha & \sqrt{\alpha^2 - x^2} - (\alpha - x) \\ \sqrt{\alpha^2 - x^2} - (\alpha - x) \end{cases}$$

$$A = \int_{0}^{\alpha} \sqrt{\alpha^{2}-\tau^{2}} dx - \int_{0}^{\alpha} (\alpha-x) dx$$

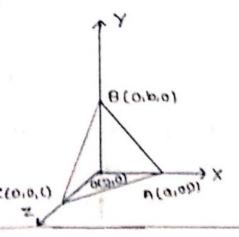
Let
$$x = a \sin \theta \Rightarrow \theta = \sin^{-1}(x | a)$$

$$\frac{\pi}{a}$$
: $\theta \in x$: 10

$$\therefore A = \int_{0}^{\pi/2} \sqrt{\alpha^{2} - \alpha^{2} \sin^{2}\theta} \cdot \alpha \cos\theta \, d\theta - \left[\alpha x - \frac{x^{2}}{3}\right]_{0}^{\alpha}$$

$$= \int_{0}^{\pi/2} \alpha^{2} \cos^{2}\theta \, d\theta - \left\{\left(\alpha^{2} - \frac{\alpha^{2}}{3}\right) - \left(0 - 0\right)\right\}$$

$$= \alpha^{2} \int_{0}^{\pi/2} \cos^{2}\theta \, d\theta - \frac{\alpha^{2}}{3}$$


$$= \alpha^{2} \left(\frac{3 - 1}{3}\right) \frac{\pi}{3} - \frac{\alpha^{2}}{3}$$

$$= \frac{\pi\alpha^{2}}{4} - \frac{\alpha^{2}}{3} + \frac{\alpha^{2}}{3} + \frac{\alpha^{2}}{3}$$

$$= \frac{\pi\alpha^{2}}{4} - \frac{\alpha^{2}}{3} + \frac{\alpha^{2}}{3} +$$

=> VOLUME OF TETRAHYDRAL

- 1. Find the volume of tetrahydral bounded by the planes x=0, y=0, z=0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- =) Given tetrahydral bounded by the plan x=0, y=0, z=0

$$= \int_{x=0}^{a} \int_{y=0}^{b|a} (a-x) c[1-\frac{x}{a}-\frac{y}{b}]^{2}$$

$$= \int_{x=0}^{a} \int_{y=0}^{b|a} (a-x) c[1-\frac{x}{a}-\frac{y}{b}]^{2}$$

$$= \int_{x=0}^{a} \left[y - \frac{xy}{a} - \frac{y}{b} \right] dy dx$$

$$= \int_{x=0}^{a} \left[y - \frac{xy}{a} - \frac{y}{b} \right] \int_{y=0}^{b|a} (a-x)$$

$$= \int_{x=0}^{a} \left[\frac{b}{a} (a-x) - \frac{x}{a} \cdot \frac{b}{a} (a-x) - \frac{b}{ab} \frac{b^{2}}{a^{2}} (a-x^{2}) \right] dx$$

$$= \int_{a}^{a} \left[\frac{b}{a} (a-x) - \frac{b}{a^{2}} x (a-x) - \frac{b}{a^{2}} (a-x^{2}) \right] dx$$

$$= \int_{a}^{a} \left[\frac{b}{a^{2}} (a-x) (a-x) - \frac{1}{a} (a-x) \right] dx$$

$$= \int_{a}^{a} \left[\frac{b}{a^{2}} (a-x)^{2} \left[1 - \frac{1}{a} \right] dx$$

$$= \int_{a}^{b} \left[\frac{a}{a^{2}} (a^{2} - a^{2} + a^{2} x) \right] dx$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{2} + a^{2} x \right]_{a}^{a}$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

$$= \int_{a}^{b} \left[\frac{a^{3}}{a^{2}} - a^{3} + a^{3} \right]$$

8. Find the volume of the tetrahydral bounded by the planes, x=0, y=0, z=0 and z+ay +3z=6.

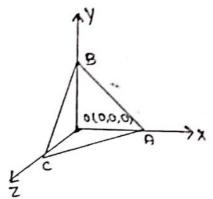
=> Given that the volume of tetrahydral bounded by plane

x=0, y=0, z=0 and x +ay +3z=6 N= [[lidy 1/2(6-2) 1/3(6-x-2y)
1. dz dy dz (0,0,0) 7=0 y=0 C(0,0,C) = 1/3 16 [6y-xy-ay] dy dx $= \frac{1}{3} \int_{0}^{6} \left[6x - xy - y^{2} \right]_{y=0}^{1/2} \left[6x - xy - y^{2} \right]_{y=0}^{1/2}$ = $\frac{1}{3} \int_{0}^{6} (6-x) y-y^{2} \int_{0}^{1/2} (6-x) dx$ $= \frac{1}{3} \int_{e}^{e} \left[(e^{-\chi}) \left(\frac{e^{-\chi}}{2} \right) - \left(\frac{e^{-\chi}}{4} \right)^{2} \right] dx$ $= \frac{1}{3} \int_{e} \left[\frac{3}{(e-x)^{2}} - (\frac{e-x}{a})^{2} \right] dx$ $=\frac{1}{3}\int_{0}^{6}\left(\frac{1}{2}-\frac{1}{4}\right)(6-x)^{2}dx$ = \frac{1}{3} \int \frac{1}{4} (6-2)^2 dx = $\frac{19}{19} \int_{e} (x_{5} - 19x + 3e) dx$ $=\frac{1}{19}\left[\frac{x^3}{3}-6x^2+36x\right]_0^6$ = $\frac{1}{12}$ [$\frac{3}{316}$ - $\frac{3}{316}$ + $\frac{3}{316}$ = $\frac{3}{316}$ = 3. Find the volume of a tetrahydral bounded by the plane x=0, y=0, z=0 and x+y+z=1 Given that, the volume of the tetrahydral x=0, y=0, z=0 and x+y+z=1

$$= \int_{x=0}^{1} \int_{y=0}^{(1-x)} \int_{z=0}^{(1-x-y)} 1 dz dy dx$$

$$= \int_{0}^{1} \left[(1-x) - x(1-x) - \frac{(1-x)^{2}}{2} \right]^{2} dx$$

=
$$\frac{1}{2} \int_{0}^{1} (1-x) [(1-x) - \frac{1}{2} (1-x)] dx$$

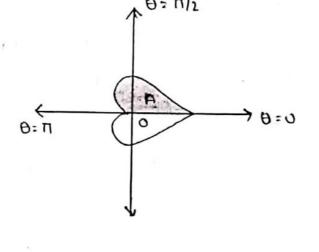

$$= \int_{0}^{1} (1-x)^{2} \left(1-\frac{1}{2}\right) dx$$

=
$$\frac{1}{2} \int_{0}^{1} (1-2x+x^{2}) dx$$

$$= \frac{1}{3} \left[x - \frac{3x^2}{3} + \frac{x^3}{3} \right]_0^1$$

$$=\frac{1}{3}\left[1-\frac{2(1)^2}{2}+\frac{1^3}{3}\right]$$

$$\frac{1}{3}\left[1-0-\frac{1}{3}\right] = \frac{1}{6}$$
 cubic units.


4. Find the area bounded by $\theta = 0$, $\theta = \pi$ of a cardiac $\pi = \alpha (1 + \cos \theta)$

$$A = \iint dx dy$$

$$= \iint r dr d\theta$$

$$= \iint_{0}^{q} \frac{\alpha(1+\cos\theta)}{r dr d\theta}$$

$$= \iint_{0}^{\pi} \left[\frac{r^{2}}{2} \right]_{0}^{\alpha(1+\cos\theta)} d\theta$$

$$=\frac{3}{1}\int_{u}^{\theta=0}\sigma_{s}\left(1+\cos\theta\right)_{s}d\theta$$

$$\frac{\partial}{\partial s} \int_{M} (1 + \cos \theta)^{2} d\theta .$$

$$\theta b \left[\frac{2}{\sigma s} \int_{\mathcal{A}} \left[1 + 8 \cos \theta + \frac{1 + \cos \theta}{2} \right] d\theta$$

$$= \frac{4}{\sigma_s} \int_{u} [3 + 4\cos\theta + 1 + \cos\theta] d\theta$$

$$= \frac{4}{\sigma_r} \int_{\mu} [\cos \theta + \cos \theta + 3] d\theta$$

=
$$\frac{2}{\sigma_r} \left[\frac{5}{\sin 5\theta} + 4 \sin \theta + 3\theta \right]_{ij}^0$$

$$A = \frac{3a^2\pi}{u}$$
 sq units

5. Find the volume of the cardiac r= all+ coso) above the intial line θ= π/2 W.K.T The volume of the Cardiac r = a (1+ coso) above the initial line 0 = n V: [STT2 Sine dide θ=0 120 Θ=0 120 Θ=0 120 Θ=0 120 = $2\pi \int_{0}^{\pi} \sin \theta \left[\frac{\pi^{3}}{3}\right] \alpha (1+\cos \theta)$ $=\frac{\pi}{3}\int_{0}^{\pi}\alpha^{3}(1+\cos\theta)^{3}\sin\theta d\theta$ = $\frac{\partial \pi \, \alpha 3}{3} \int_{0}^{\pi} (1 + \cos \theta)^{3} \sin \theta \, d\theta$ Let It COSH = E => ·Sin o do = dt => Sin & do = -dt

$$V = \frac{3}{2\pi a^3} \int_0^a t^3 (-dt)$$

$$= \frac{3\pi\alpha^3}{3} \int_{a}^{3} t^3 dt$$

$$= \frac{3}{8\mu\sigma_3} \left[\frac{4}{4\pi} \right]_{\mathcal{S}}^{0}$$

-1

$$A = \frac{8\pi a_3}{8\pi a_3} \text{ cupic units}$$

$$= \frac{4x_3}{8\pi a_3} \times 3x_3x_3x_3$$

$$= \frac{4x_3}{3} \times (3_4 - 0)$$

=) Beta - Gamma functions

Defination: For any (m,n)>0, then the imperper integral can be defined as $\beta(m,n) \int_{0}^{\infty} 2^{n-1} (1-2)^{n-1} dx \to 0$ is called the Beta function in m and n,

(1) =)
$$\beta(m,n) = \int_{u/2}^{u/2} (\sin_2 \theta)_{u-1} \cdot (1 - \sin_2 \theta)_{u-1} \delta \sin \theta$$
 (e)

$$\Rightarrow \beta \ (m,n) = a \int_{0}^{\pi/2} \sin \theta^{2m-1} \cdot \cos \theta^{2n-1} \ d\theta \rightarrow 0$$

=)
$$\int_{a}^{a} \sin^{2}\theta \cos^{2}\theta = \frac{1}{2} B \left(\frac{5+1}{2}, \frac{3+1}{2} \right)$$

Gamma function: for every now gamma function can be defined as

$$\overline{m} = \int_0^\infty e^{-x} x^{n-1} dx \to 0$$

Let z=yz

$$= 3 \int_{0}^{\infty} e^{-y^{2}} [y^{2}y^{n-1}] dy dy$$

$$= 3 \int_{0}^{\infty} e^{-y^{2}} [y^{2}y^{n-1}] dy dy$$

$$= 3 \int_{0}^{\infty} e^{-y^{2}} [y^{2}y^{n-1}] dy dy dy$$

RELATION BETWEEN BETA AND GAMMA FUNCTION

we know that,

$$\beta [m, m] = 3 \int_{\mu | S} |S| u_{s} u_{s} d\theta \qquad \Rightarrow 0$$

$$= 3 \int_{\mu | S} |S| u_{s} u_{s} d\theta \qquad \Rightarrow 0$$

$$\overline{m} : 2\int_{0}^{\infty} e^{-y^{2}} y^{2n-1} dy \longrightarrow 3$$

Int =
$$3\int_{0}^{\infty} e^{-\tau^{2}} r^{2} (m+n)^{-1} dr \rightarrow \emptyset$$

Let Im In = $3\int_{0}^{\infty} e^{-\tau^{2}} r^{2} m^{-1} y^{2} n^{-1} dr dy \rightarrow 6$
Let $x = r(\cos\theta), y = r\sin\theta$

=) dx dy = rdr do

$$= 4 \int_{\infty} \int_{\mu_{1}}^{\pi_{2}} e^{-\lambda_{1}} \lambda_{3m-1} + 3m-1 + 1$$

$$= 4 \int_{\infty}^{\pi_{2}} \int_{\mu_{1}}^{\pi_{2}} e^{-\lambda_{1}} \lambda_{3m-1} + 3m-1 + 1$$

$$= 2 \ln_{3} \mu_{1}$$
Sin_{3n-1} \theta \text{ (or shift)}

$$B(m,n) = \frac{m \ln}{m \ln} /$$

Note:

f 1]

Show that T1/2 = VTT using Beta - gamma function . L WKT [w = 3] o - xx x sw-1 dr → 1) m = 2 / e-y2 y2n-1 dy → @ :. Im In = [2 [2 [e-x2 x2n-1 dx] [2] e-y2 y2n-1 dy] => [m [=] 00 [00 e-22, e-y2] 22m-1 y2n-1 dzdy -> 3 let m= 1 , n= 1 (2) => 11/2 11/2 = 4 \(\int \) \(\frac{e}{2} \) \(\frac{e}{2} \) \(\tau^2 + y^2 \) \(\chi^0 y^0 \) \(\dagger \) =) $(\sqrt{1/2})_5 = 4 \int_{\infty}^{\infty} \int_{0}^{\infty} e^{-(x_5 + y_5)} dx dy \rightarrow 0$ Let z = roso , y= rsino =) dxdy = rdrd0 :. (1) (1/2)2 = 4 / (1/2) (1/2)2 - 1/2 (1/2) = 4 5 re-72 dr [0] = ## / L & L 6-1, qu = IL \ (al) [al] qu Let 72 = t => 2r dr = dt (1/2)2 = 11 /00 6-4 9F

$$\int_{0}^{\pi/2} \cos^{4}\theta \, d\theta = \frac{1}{2} \beta \left(\frac{P+1}{2}, \frac{q+1}{2} \right)$$

$$= \frac{1}{2} \beta \left(\frac{1}{2}, \frac{5}{2} \right)$$

$$= \frac{1}{2} \frac{\Gamma \sqrt{2} |5|_{2}}{[\sqrt{2} + 5|_{2}]}$$

$$= \frac{1}{2} \frac{\Gamma \sqrt{2} |5|_{2}}{[\sqrt{3} + 1] |5|_{2}}$$

$$= \frac{1}{2} \frac{\Gamma \sqrt{2} |5|_{2}}{[\sqrt{3} + 1] |5|_{2}}$$

$$= \frac{1}{2} \frac{\Gamma \sqrt{2} |5|_{2}}{[\sqrt{3} + 1] |5|_{2}}$$

$$= \frac{1}{2} \sqrt{\pi} \sqrt{\pi}$$

$$= \frac{3}{16} \sqrt{\pi} \sqrt{\pi}$$

$$\Rightarrow \Gamma = 3\pi$$

$$P = ||_{1}^{2} ||_{2}^{2} ||_{1}^{2} ||_{2}^{2} ||_{1}^{2} ||_{2$$

$$= \frac{1}{3} \frac{|V_{4}| |V_{2}|}{|V_{4} + V_{2}|}$$

$$\Rightarrow I_{2} = |V_{2} \frac{|V_{4}| |V_{2}|}{|V_{4}|}$$

$$I = 3 \frac{|2V_{4}| |V_{2}|}{|V_{4}|} \cdot |V_{2}| \frac{|V_{4}| |V_{2}|}{|V_{3}|_{4}}$$

$$\therefore I = |V_{1}| |V_{2}|$$

$$I = \sqrt{\pi} \sqrt{\pi}$$

$$I = \sqrt{\pi} \sqrt{\pi}$$

$$I = |V_{1}| |V_{2}|$$

$$I = \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi} \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi} \sqrt{\pi} \sqrt{\pi}$$

$$V = \sqrt{\pi}$$

$$\int_{0}^{\pi | 1 } \sin^{4}\theta \cos^{2}\theta d\theta = \frac{1}{2} \beta \left(\frac{5}{2}, \frac{3}{2} \right)$$

$$= \frac{1}{2} \frac{512}{312} \frac{312}{12}$$

$$= \frac{1}{2} \frac{312}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{312}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{312}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{3}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{3}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{3}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12} \frac{12}{12}$$

$$= \frac{1}{2} \frac{3}{12} \frac{12}{12} \frac{12}{$$

5. Evaluate
$$\int_{0}^{4} x^{3/2} (4-x)^{5/2} dx$$
 by using Beta-gamma function, Show that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$

$$\beta(m,n) = \int_{0}^{1} \frac{x^{m-1}}{(1+x)^{m+n}} dx + \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$$
Let $I = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$
then, $x = \frac{1}{y}$, $y = \frac{1}{2}$

$$dx = \frac{1}{y^{2}} dy$$
U.L.: $x = (x = 1) = (x = 1)$
LL.: $x = (x = 1) = (x = 1)$

$$I = \int_{0}^{1} \frac{(1/y)^{m+1}}{(1+yy)^{m+n}} \left(-\frac{1}{y^{2}}\right) dy$$

$$= \int_{0}^{1} \frac{1}{y^{m-1}} \frac{1}{y^{2}}$$

$$= \int_{0}^{1} \frac{1}{y^{m-1}} \frac{1}{y^{2}}$$

$$= \int_{0}^{1} \frac{1}{y^{m-1}} \frac{1}{y^{2}} dy$$

$$= \int_{0}^{1} \frac{1}{y^{m+1}} \frac{1}{y^{m+n}} dy$$

$$= \int_{0}^{1} \frac{1}{y^{m+1}} \frac{1}{y^{m+n}} dy$$

$$= \int_{0}^{1} \frac{1}{y^{m+1}} \frac{1}{y^{m+n}} dy$$

$$= \int_{0}^{1} \frac{1}{y^{m-1}} dy$$

$$= \int_{0}^{1} \frac{1}{y^{m-1}} dx$$

$$= \int_{0}^{1} \frac{1}$$

$$\Rightarrow T = T_{1} \times T_{2}$$

$$T_{1} = \int_{0}^{\infty} e^{-t^{2}} \sqrt{x} \, dx \Rightarrow \int_{0}^{\infty} e^{-x^{2}} x^{2n-1} \, dx$$

$$= \int_{0}^{\infty} e^{-t^{2}} \sqrt{x} \, dx \Rightarrow \int_{0}^{\infty} e^{-x^{2}} x^{-1/2} \, dx \Rightarrow \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} \, dx$$

$$T_{2} = \int_{0}^{\infty} e^{-x^{2}} / \sqrt{x} \, dx \Rightarrow \int_{0}^{\infty} e^{-x^{2}} x^{-1/2} \, dx \Rightarrow \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} \, dx$$

$$\therefore \exists m = 1 = -\frac{1}{2} \Rightarrow \exists m = 1 - \frac{1}{2} \Rightarrow \exists m = \frac{1}{2} \Rightarrow m = \frac{1}{4}$$

$$T_{2} = \frac{11/4}{2}$$

$$T = \frac{11/4}{2} \Rightarrow \frac{\pi}{1} = \frac{\pi}{1}$$

$$\Rightarrow \frac{1}{4} = \frac{\pi}{1} = \frac{\pi}{1}$$

$$T = \frac{1}{4} = \frac{\pi}{\sqrt{4}}$$

$$T = \frac{1}{4} = \frac{\pi}{\sqrt{4}}$$

$$T = \frac{\pi}{4} \Rightarrow \frac{\pi}{2\sqrt{2}} \Rightarrow \frac{$$

||Jai Sri Gurudev|| S. J. C. INSTITUTE OF TECHNOLOGY, CHICKBALLAPUR Department of Mathematics

LECTURE NOTES

CALCULUS & LINEAR ALGEBRA (18MAT11)

Prepared By:

Purushotham.P Assistant Professor SJC Institute of Technology Email id: ppurushothamp48@gmail.com

CALCULUS AND LINEAR ALGEBRA

MODULE-II

DIFFERENTIAL EQUATION

If an equation contain one dependent variable and then derivative with respect to one or more independent variable is called Differential equation.

There are are two types of D. E

Phone: 8197481658

- 1. Ordinary differential equation
- a. partial differential equation
- =) Ordinary differential equation: If an equation contain one dependant variable and its derivative with respect to one independant variable.

=> Partial differential equation: If an equation Contain one depeandant variable and derivatives with respect to

=> Order and degree of differential equation

The highest derivative in a given D. E is called order it's power is called degree

ex:
$$x^{2}\left(\frac{d^{3}y}{dx^{3}}\right)^{4} - \partial x\left(\frac{d^{2}y}{dx^{2}}\right)^{5} + \left(\frac{dy}{dx}\right)^{5} + y = 0$$

The highest derivative is $\frac{d^3y}{dx^3}$ and power 4 order of D.E = 3

degree of D. E = 4

Solution of 1st order and 1st degree D.E Generally 1st order and 1st degree D.E is in the form $\frac{dy}{dx} = f(x,y)$

=> Exact Differential equation.

Step 1:- write the given D. E is in the form m(z,y)dz + N(z,y)dy = 0

Step 2: - Identify the M and N find am, and Dy Dy

Step 3:- if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ we say that given D.E is exact D.E

Step 4: Write the Solution for E.D.E

 $\int M(x,y) dx + \int (The terms which don't contain x in N)$ dy = C

Problems:

1. Solve
$$\frac{dy}{dx} + \frac{3x+3y-1}{3x+4y-3} = 0$$

 $(3x+3y-1) dx + (3x+4y+3) dy = 0$
 $M = (3x+3y-1) \qquad N = (3x+4y+3)$

$$\frac{\partial m}{\partial y} = 3 \qquad \frac{\partial N}{\partial x} = 3$$
The given O.E is E.DE
$$\begin{cases} (2xy) dx + \int (the trm which don't contain x) dy = c \\ \Rightarrow \int (3x + 3y - 1) dx + \int (4y + 3) dy = c \\ \Rightarrow \frac{\partial x^2}{\partial x} + 3yx - x + \frac{u}{2}y^2 + 3y = c \\ \Rightarrow x^2 + 3yx - x + 3y^2 + 3y = c \end{cases}$$
O3. Solve
$$(3x + y + 1) dx + (x + 3y + 1) dy = 0$$

$$(3x + y + 1) dx + (x + 3y + 1) dy = 0$$

$$m = (3x + y + 1) \qquad N = (x + 3y + 1)$$

$$\frac{\partial m}{\partial y} = 1$$

$$\frac{\partial m}{\partial y} = \frac{\partial N}{\partial x} = 1$$

$$\frac{\partial m}{\partial y} = \frac{\partial N}{\partial x} = 1$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$(3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$(3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3y + 1) dy = c$$

$$(3x + y + 1) dx + \int (3y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3x + y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3x + y + 1) dy = c$$

$$\Rightarrow \int (3x + y + 1) dx + \int (3x + y$$

4. Solve
$$(514 + 3x^2y^2 - 3xy^3) dx + (31^3y - 31^2y^2 - 5y^5) dy$$
 $(524 + 3x^2y^2 - 3xy^3) dx + (31^3y - 3x^2y^2 - 5y^4) dy$
 $(524 + 3x^2y^2 - 3xy^3) dx + (31^3y - 3x^2y^2 - 5y^4) dy$
 $(534 + 3x^2y^2 - 3xy^3) dx + (51^3y - 5x^2y^2 - 5y^4) dy = 6x^2y - 6xy^2$
 $(534 + 3x^2y^2 - 3xy^3) dx + (51 - 5y^4) dy = 6x^2y - 6xy^2$
 $(5x^4 + 3x^2y^2 - 3xy^3) dx + (51 - 5y^4) dy = 6x^2y - 6xy^2$
 $(5x^4 + 3x^2y^2 - 3xy^3) dx + (51 - 5y^4) dy = 6x^2y - 5x^2y^3 - 2x^2y^3 - 2x^2y^3$

case ①: if
$$\frac{1}{N} \left[\frac{\partial m}{\partial y} - \frac{\partial n}{\partial x} \right] = f(x)$$

multiply the Integration factor to the given DE and follow same procedure

Case (2):- if
$$\frac{1}{m} \left[\frac{3m}{m} - \frac{3n}{m} \right] = g(y)$$

And proceed the same

$$(4xy + 3y^2 - x) dx + (x^2 + 8yx) dy \longleftrightarrow \rightarrow 0$$

$$M = 4yx + 3y^2 - x$$
 $N = x^2 + 3yx$

$$\frac{\partial m}{\partial y} = 4x + 6y$$
 $\frac{\partial m}{\partial x} = 3x + 3y$

$$\frac{\partial \lambda}{\partial w} + \frac{\partial x}{\partial w}$$

$$\Rightarrow \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{1}{1} \left[\frac{\partial A}{\partial w} + \frac{\partial A}{\partial w} \right] = \frac{\partial A}{\partial w} + \frac{\partial A}{\partial w}$$

$$\Rightarrow \frac{N}{T} \left[\frac{9A}{5W} - \frac{9A}{9N} \right] = \frac{3}{3} = f(a)$$

I.F X (1) =
$$x^2 (4xy + 3y^2 - x) dx + x^2 (x^2 + 3y^2) dy = 0$$

$$M^1 = 4x^3y + 3x^2y^2 - x^3$$
 $N^1 = x^4 + 2yx^3$

$$\frac{\partial \lambda}{\partial w_1} = Ax_3 + ex_5 \lambda \qquad \frac{\partial x}{\partial w_1} = Ax_3 + e\lambda x_5$$

The given Solution is EDE

$$\Rightarrow \int (4x^3y + 3x^2y^2 - x^2) dx - \int 0 dy = 0$$

$$\Rightarrow \frac{4x^3y}{4} + \frac{3x^3}{3}y^2 - \frac{x^4}{4} = 0$$

$$\Rightarrow \frac{2xy}{4} + \frac{3x^3}{4}y + \frac{3x^3}{4$$

$$(3x + 1/y) dx - x/y^2 dy = 0$$

$$m' = 3x + 1/y \qquad N' = x/y^2$$

$$\frac{3m'}{3y} = -\frac{1}{y^2} \qquad \frac{3N'}{3x} = -\frac{1}{y^2}$$

$$\frac{3m'}{3y} = -\frac{1}{y^2} \qquad \frac{3N'}{3x} = -\frac{1}{y^2}$$

$$\Rightarrow \int (3x + \frac{1}{y}) dx = c$$

$$\Rightarrow \frac{3x^2}{3} + \frac{x}{y} = c$$

$$\Rightarrow \frac{3x^2}{3} + \frac{x}{y} = c$$

$$\Rightarrow x^2 + \frac{1}{y} = c$$
5. Solve $y(x + y) dx + (x + 3y - 1) dy = 0 \rightarrow 0$

$$(xy + y^2) dx + (x + 3y - 1) dy = 0 \rightarrow 0$$

$$m = xy + y^2 \qquad N = x + 3y - 1$$

$$\frac{3m}{3y} = x + 3y \qquad \frac{3N}{3x} = 1$$

$$\frac{3m}{3y} = x + 3y \qquad \frac{3N}{3x} = 1$$

$$\frac{3m}{3y} = x + 3y \qquad \frac{3N}{3x} = 1$$

$$1 \cdot \sum_{x = 0} \int f(x) dx + (e^{x}x + 3ye^{x} - e^{x}) dy = 0$$

$$(xye^{x} + e^{x}y^3) dx + (e^{x}x + 3ye^{x} - e^{x}) dy = 0$$

$$(xye^{x} + e^{x}y^3) dx + (e^{x}x + 3ye^{x} - e^{x}) dy = 0$$

$$(xye^{x} + e^{x}y^3) dx + (e^{x}x + 3ye^{x} - e^{x}) dy = 0$$

$$(xye^{x} + e^{x}y^3) dx + (e^{x}x + 3ye^{x} - e^{x}) dy = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} + e^{x}y^3) dx = 0$$

$$\lim_{x \to 0} \int f(xye^{x} +$$

6. Solve
$$(3x^{2}y^{4} + 3xy) dx + (3x^{3}y^{3} - x^{2}) dy = 0$$
 $(3x^{2}y^{4} + 3xy) dx + (3x^{3}y^{3} - x^{2}) dy = 0$
 $M = 3x^{2}y^{4} + 3xy$
 $N = 3x^{2}y^{3} + 3x$
 $N = 3x^{2}y^{3} + 3x$
 $N = 3x^{2}y^{3} + 3x$
 $N = 3x^{2}y^{3} - 3x$
 $N = 3x^{2}y^{3} + 3x$
 $N = 3x^{2}y^{3} - 3x$
 $N = 3x^{2}y^{3} + 3x^{2}y^{3}$
 $N = 3x^{2}y^{3} +$

I.F
$$x \oplus = y^3 (y^4 + ay) dx + y^3 [xy^3 + ay^4 - 4x] dy = 0$$

The given Reductable D.E is

$$\Rightarrow xy^7 + ay^4 dx + xy^3 dy = c$$

$$\Rightarrow xy^7 + axy^4 + ay^8 = c$$

$$\Rightarrow xy^7 + axy^4 + y^8 = c$$

Linear differential equation of 1st degree and 1st degree

The general Linear differential equation of 1st degree

and 1st order

$$\frac{dy}{dx}$$
 + P(x) y = Q(x)

identify P.Q and also find $\frac{1}{4}$, $\frac{1}{5}$ esp(x) dx Write the Solution yxx. Fig(x) IF dx +c in other form.

The Solution of
$$\frac{dx}{dy}$$
 + P(y)x = Q(y)

$$\therefore I \neq x = \int Q(y) I \neq y + c$$

$$I \neq y = e^{\int P(y)dy}$$

1. Solve
$$\frac{dy}{dz} - \frac{y}{z} = az^2$$

$$\frac{dy}{dz} + \left(-\frac{1}{2}\right)y = az^2$$

$$P = -\frac{1}{2} \quad Q = az^2$$

$$I \cdot F = \left[e^{SP(z)dz}\right] = e^{-\frac{y}{2}} \cdot \frac{1}{2} \cdot dz + C$$

$$\Rightarrow \frac{y}{z} = \int az^2 + \frac{1}{2} \cdot dz + C$$

$$\Rightarrow \frac{y}{z} = \int az^2 + \frac{1}{2} \cdot dz + C$$

$$\Rightarrow \frac{1}{4} = \int 3x \, dx + C$$

$$\Rightarrow \frac{1}{4} = \int 3x \, dx + C$$

$$\Rightarrow \frac{1}{4} = x^2 + Cx$$

$$\Rightarrow y = x = x^2 + Cx$$

$$\Rightarrow y = x^2 + Cx$$

$$\Rightarrow x =$$

Bernoulis differential equation

The general solution of Bernoulis differential equation

 $\frac{dy}{dx} + P(x) y = Q(x) y^n \rightarrow 0$

divide eqn (1) by yn

eqn (i) =)
$$\frac{1}{y^n} \frac{dy}{dx} + P(x) \frac{1}{y^{n-1}} = Q(x) \rightarrow 2$$

Let $\frac{1}{y^{n-1}} = Q(x)$

And differentiating wrt x we get $\Rightarrow (-n+1) y^{-n} \frac{dy}{dx} = \frac{du}{dx}$ $\frac{1}{y^n} \frac{dy}{dx} = \frac{1}{(1-n)} \frac{du}{dx}$

then eqn (a) =
$$\frac{1}{1-n} \frac{du}{dx} + P(x)u = Q(x)$$

$$\frac{du}{dx} + P(x)u = Q(x)$$

$$\frac{du}{dx} + P(x)u = Q(x)$$
1. Solve $\frac{du}{dx} + \frac{1}{1} = xy^2$

$$\Rightarrow \frac{du}{dx} + \left(\frac{1}{1}\right) = xy^2$$

$$\frac{1}{1} \frac{du}{dx} + \left(\frac{1}{1}\right) \left(\frac{1}{1}\right) = xy^2$$

$$\Rightarrow \frac{du}{dx} = \frac{1}{1} \left(\frac{du}{dx}\right)$$

$$\Rightarrow \frac{-du}{dx} = \frac{1}{1} \left(\frac{du}{dx}\right)$$

$$\Rightarrow \frac{-du}{dx} = \frac{1}{1} \left(\frac{du}{dx}\right)$$

$$\Rightarrow \frac{-du}{dx} + \frac{1}{1} = xy$$

$$\Rightarrow \frac{du}{dx} + \left(-\frac{1}{1}\right)u = -x$$

$$\Rightarrow \frac{1}{1} \cdot F = e^{\int P(x)dx} = e^{\int V(x) dx} = e^{\int U(x)} = V(x)$$

$$\Rightarrow T \cdot F = e^{\int P(x)dx} = e^{\int V(x) dx} = e^{\int V(x)} = x$$

$$\Rightarrow \frac{1}{1} \cdot F = -\frac{1}{1} \cdot \frac{1}{1} \cdot$$

a. Solve
$$\frac{dy}{dt} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$$

$$\Rightarrow \frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$$

$$\Rightarrow y^2 \frac{dy}{dx} + (-\tan x)y^3 = \sin x \cos^2 x \to 0$$

let $U = y^3$

$$\frac{du}{dx} = 3y^2 \frac{dy}{dx} \to 0$$

apply $eq^n @ in @$

$$\frac{1}{3} \frac{du}{dx} + (-\tan x)u = \sin x \cos^2 x$$

$$\frac{du}{dx} + (-3\tan x)u = 3\sin x \cos^2 x$$

let $P = -3\tan x$ $Q = 3\sin x \cos^2 x$

let $P = -3\tan x$ $Q = 3\sin x \cos^2 x$

I.f. $= e^{\int P(x) dx} = e^{-\int \tan x \cdot 3dx} = e^{-\int \tan x \cdot 3d$

$$\frac{dt}{dy} = xy + x^{2}y^{3}$$

$$\frac{dx}{dy} - xy = x^{2}y^{3}$$

$$\frac{1}{1^{2}} \frac{dx}{dy} + \left(-\frac{1}{x}\right)y = y^{3} \to 0$$

$$1 = \frac{1}{x^{2}} \frac{dx}{dy}$$

$$1 = \frac{1}{x^{2}} \frac{dy}{dx}$$

$$1 = \frac{1}{x^{2}} \frac{dx}{dx}$$

$$1 = \frac{1}{x^{2}} \frac{dx}{dy}$$

Sec
$${}^{2}y \frac{dy}{dx} + tany(8\pi) = x^{3} \rightarrow 0$$

Let $u = 3tany$
 $0 \rightarrow x$
 $\frac{du}{dx} = 3sec^{2}y \frac{dy}{dx} \rightarrow 0$

Apply $eq^{n}(0)$ in (0)
 $\frac{1}{3} \frac{du}{dx} + tux = x^{3}$
 $1 \cdot F = e^{\int P(x)dx} = e^{3x^{3}} dx + e^{x^{2}}$
 $VXI \cdot F = \int Q(x)I \cdot F dx + e^{x^{2}} dx + e^{x$

Let
$$U = -\frac{1}{4}$$
 $D \rightarrow \Theta$

$$\frac{du}{d\theta} = \frac{1}{4} \cdot \frac{d\tau}{d\theta} \rightarrow \widehat{\Theta}$$

$$eq^{n} \widehat{U} \Rightarrow \frac{du}{d\theta} + U \tan \Theta = -\frac{1}{\cos \theta}$$
 $P = \tan \Theta \quad \Theta \quad = -\frac{1}{\cos \theta}$
 $I \cdot F : e^{\int P(0) d\Theta} = e^{\int \tan \Theta d\Theta} = e^{\log \sec \Theta} = \sec \Theta$

The solution is

$$U \times I F : \int G(0) I \cdot F d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \sec \Theta d\Theta + C$$

$$U \cdot Sec \Theta : \int -\frac{1}{\cos \theta} \cdot \cot$$

$$cq^{m} \bigcirc \Rightarrow -\frac{\partial du}{\partial y} + \frac{\partial}{y} = \frac{1}{\sqrt{y}}$$

$$\frac{du}{dy} + \left(-\frac{1}{2y}\right)u = -\frac{1}{2\sqrt{y}}$$

$$P = -\frac{1}{2y} \qquad Q = -\frac{1}{2\sqrt{y}}$$

$$1.F = e^{\int P(x)} dy = e^{\int \frac{1}{2y}} dy = \frac{1}{\sqrt{y}}$$

$$1.F = e^{\int P(y)} dy = e^{\int \frac{1}{2y}} dy + e$$

$$-\frac{1}{2y} = \frac{1}{2} \log y + e$$

$$-\frac{1}{2y} = \frac{1}{2y} \log x + e$$

$$-\frac{1}{3} \frac{1}{2y} = \frac{1}{2y} \log x + e$$

$$-\frac{1}{3} \frac{1}{3} \log x + e$$

$$-\frac{1}{3} \log x + e$$

$$-\frac{1}$$

$$\frac{du}{dx} + \frac{3u}{x} = \frac{3\cos x}{x^3}$$
Let $P = 3/x$, $Q = \frac{3\cos x}{x^3}$

$$I.F = e^{\int P dx} = e^{\int 3/x} dx = e^{\log x^3} = x^3$$
The Solution is given by
$$I.F \times U = \int Q IF dx + C$$

$$\frac{x^3}{y^3} = \int \frac{3\cos x}{x^3} x^3 dx + C$$

$$\frac{x^3}{y^3} = 3\int \cos x dx + C$$

$$\frac{x^3}{y^3} = 3\sin x + C$$

orthogonal trajectory:

Or thagonal trajectory is a curve which is I'm to the given curve

working procedure:

carterian form:

Step (1):- Consider the given F(x,y,c)=0 where is the parameter

Step 2: construct DE which is free from the paramet

f(x,y,dy|dx)=0

Replace $\frac{dy}{dx}$ as $-\frac{dx}{dy}$ in the above we get g(x,y,-dx)=0

Solve the above and we get G(x,y,C')=0

which is O. T. of Given Curve

Palar form:

consider the curve fcr, 0, c) =0

where c is parameter

D.E which is free from parameter consider F (r, 0, dr/do) = 0

Replace $\frac{dr}{d\theta}$ as - $r^2 \frac{d\theta}{dr}$ in the above we get

$$\partial \left(\lambda' \theta' - \lambda_{\sigma} \frac{d\theta}{dx} \right) = 0$$

solve the above and get

which is require 0.T of a given curve

orthogonal trajectory of parameter y= 4ax 1. Find 5.07 (m) (m) Given y2=4ax → 1)

in eqn @ y2 = 2y (dy) 1

$$y = \partial x \left(\frac{dy}{dx} \right) \rightarrow 2$$

Integration oBS

$$\frac{y^2}{3} = -\frac{3x^2}{3} + c$$

a. Find the orthogonal trajectory of
$$\frac{x^2}{a^2} + \frac{y^2}{b^2+\lambda} = 1$$
 where λ is parameter.

$$\frac{1}{b^2 + \lambda} = -\frac{1}{a^2 yy_1}$$

$$b^2 - \lambda = a^2 yy_1 \implies a^2$$

$$a^2 - \frac{a^2 yy_1}{x}$$

$$a^2 - \frac{1}{a^2 y_1} = a^2$$

$$\frac{y}{dx} = \frac{\alpha^2}{x} - x$$

Integration OBS

$$\int y \, dy = \int \frac{\alpha^2}{x} \, dx - \int x \, dx$$

$$\frac{y^2}{2} = \alpha^2 \log x - \frac{x^2}{2} + c$$

$$\int y \, dy = \int \frac{a^2}{x} \, dx - \int x \, dx$$

$$\frac{y^2}{a} = a^2 \log x - \frac{x^2}{a^2} + c$$

$$y^2 + x^2 = 2a^2 \log x + 2c$$

that $\frac{\chi^2}{a^2+\lambda} + \frac{y^2}{h^2+\lambda} = 1$ is a Self orthogonal where λ a parameter.

$$\frac{x^2}{a^2 + \lambda^2} + \frac{y^2}{b^2 + \lambda} = 1 \rightarrow 0$$

$$\frac{\partial x}{\partial x^2 + \lambda} + \frac{\partial y}{\partial x^2 + \lambda} = 0$$

$$\frac{\sigma_5 + y}{x} + \frac{p_5 + y}{30} = 0$$

$$\Rightarrow \chi(b^2+\eta)+(a^2+\eta)(yy_i)=0$$

$$a^{2}+\lambda = \frac{4991}{b^{2}+\lambda} = 0$$

$$x + \frac{991}{b^{2}+\lambda} = 0$$

$$x^{2}+\lambda + \frac{991}{b^{2}+\lambda} = 0$$

$$y = -p_5x - \sigma_5 d^3h^3$$

$$\frac{x + yy}{\alpha^2 + \lambda} = \frac{x + yy}{\alpha^2 + \alpha^2 yy}$$

$$b^2+\lambda = b^2 - \frac{x+yy_1}{x+yy_1}$$

$$x+yy_1 \Rightarrow b^2 + \lambda = -(\alpha^2 - b^2)yy_1$$

$$x+yy_1 \Rightarrow a^2 + \lambda = -(\alpha^2 - b^2)yy_1$$

$$x+yy_1 \Rightarrow a^2 + \lambda = -(\alpha^2 - b^2)yy_1$$

Then eqn (1) =>
$$\frac{\chi^2}{(a^2-b^2)\chi} + \frac{y^2}{-(a^2-b^2)yy_1} = 1$$

$$(x-yy_1)(x-y)=a^2-b^2\to \textcircled{2}$$

$$Put y_1=\frac{1}{y_1}$$

$$(x-y/y_1)(x+yy_1)=a^2-b^2\to \textcircled{3}$$
The eqn ② and ③ are same
$$\therefore \text{ The eqn is Self Orthogonal}$$

$$u. \text{ Show that } y^2=ya(x+a) \text{ is Self Orthogonal}$$

$$u. \text{ Show that } y^2=ya(x+a)\to \textcircled{0}$$

$$D\to x$$

$$\exists y \ \underline{dy} = ya$$

$$a=\frac{yy_1}{a}$$

$$a=\frac{yy_1}{y_1}$$

$$a=\frac{yy_1}{y_1}$$

$$y^2=y(3xy_1+yy_1^2)\to \textcircled{2}$$
Thus $x \to D \to a$ for given family
$$\text{Reptaing } y_1=\frac{1}{y_1}$$

$$y=\frac{3x}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}$$

$$y=\frac{3x}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}+\frac{1}{y_1}$$
Thus is the D.E of orthogonal family which is same as $\textcircled{2}$ being D.E of the given family
$$\text{Thus the family of parabola } y^2=ya(x+a) \text{ is } cn+hogonal$$

5. find the orthogonal trajectory of
$$r^n = a^n \cos n\theta$$
 where a in a parameter.

$$L_{u} = K_{u} \operatorname{Sim} u \theta$$

$$\operatorname{Iod}_{R_{u}} = \operatorname{Iod}_{R} \operatorname{[Sim}_{u} \theta \times K_{u}]$$

6. Find the orthogonal trajectory of $\tau^n = a^n \sin n\theta$ where a in parameter. $\tau^n = \alpha^n Sinn \theta$

$$\begin{array}{ccc}
T^n = a^n Sinn\theta \\
D \Rightarrow \Theta \\
\frac{dt}{d\theta} n^{n-1} = a^n (\&sn\theta) \\
\frac{dt}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{d\theta}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{dt}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{dt}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{dt}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{d\theta}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{\theta} \frac{d\theta}{d\theta} = a^n (\&sn\theta) \\
\frac{1}{$$

$$\frac{1}{r} \frac{dr}{d\theta} = \frac{a^m \cos n\theta}{a^m \sin \theta}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \cot \theta$$

Replace
$$\left(\frac{ds}{d\theta}\right) = -\frac{r^2 dr}{dr}$$

 $\frac{1}{3}\left(-\frac{r^2 d\theta}{dr}\right) = \cot r\theta$
 $\frac{1}{3}\left(-\frac{r^2 d\theta}{dr}\right) = \cot r\theta$
 $\frac{1}{3}\left(dr\right) = \frac{1}{3}\left(d\theta\right)$

$$\frac{1}{2}\left(-\frac{\partial}{\partial r} \frac{\partial}{\partial r}\right) = \cot \theta$$

Integration on BS

$$\log\left(\frac{rn}{kn}\right) = \log\left(\operatorname{Sec} n\theta\right)$$

7. Find the orthogonal trajectory of $r^n Sinn \theta = a^n$ where a is parameter.

$$u \xrightarrow{\partial -1} \frac{\partial x}{\partial \theta} = 0$$

$$\frac{\pi}{\theta m} \frac{\partial}{\partial r} = \theta m \pi i \partial \frac{\partial}{\partial \theta} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta}$$

$$\frac{1}{7} \frac{dr}{d\theta} = -\frac{\cos n\theta}{\sin n\theta}$$

$$\frac{1}{4} \frac{dr}{d\theta} = -\cos t n\theta$$

Replace
$$\frac{dr}{d\theta} = -\cot \theta$$
 $\frac{1}{3} - \frac{r^2 d\theta}{d\theta} = -\cot \theta$
 $\frac{1}{3} - \frac{r^2 d\theta}{d\theta} = -\cot \theta$
 $\frac{1}{3} - \cot \theta$

$$\frac{\lambda}{l} - \frac{dQ}{\sqrt{g}} = -cotu\theta$$

$$s\frac{dr}{d\theta} = Cotn\theta$$

$$\frac{8}{1} dr = \frac{6}{100} d\theta$$

Integration 0BS

$$\frac{\log x = \log (\sin n\theta) + \log k}{n}$$

$$\lambda_{\omega}$$
 (($\alpha \sin \theta$) = K_{ω}

8. find the orthogonal brajectory of family of curve 7 = 2a coso where 'a in parameter.

$$7 = 3a \cos\theta \rightarrow 0$$

$$D \Rightarrow 0$$

$$\frac{dr}{d\theta} = -3a \sin\theta \rightarrow 0$$

$$\frac{d\theta}{d\theta} = -\omega t n\theta$$

$$\frac{1}{7} \frac{dr}{d\theta} = -t n n\theta$$

$$Replace \left(\frac{dr}{d\theta}\right) = -r^2 \frac{d\theta}{dr}$$

$$-\frac{1}{7} r^2 \frac{d\theta}{dr} = -t n n\theta$$

$$\frac{1}{7} dr = t n n\theta$$

$$\frac{1}{7} dr = t n n\theta$$

$$\frac{1}{7} dr = \frac{1}{7} t n n\theta$$

$$\frac{1}{7} dr = \int \frac{1}{7} t n n\theta$$

$$\frac{1}{\gamma} \frac{dr}{d\theta} = \frac{2}{8} \frac{\sin \theta_{1}}{\log x} \frac{\cos \theta_{2}}{2}$$

$$\frac{1}{\gamma} \frac{dr}{d\theta} = \tan \theta_{1}$$

Replace $\frac{dr}{d\theta} = -\frac{1}{3} \frac{d\theta}{d\tau}$

$$\frac{1}{3} \left(-\frac{7^{2}}{3} \frac{d\theta}{d\tau} \right) = \tan \theta_{1}$$

$$\frac{1}{3} \frac{dr}{d\tau} = -\frac{1}{3} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\tau} = -\frac{1}{3} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\tau} = -\frac{1}{3} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\tau} = -\frac{1}{3} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \frac{1}{3} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \frac{1}{3} \frac{\sin \theta}{d\tau} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \frac{1}{3} \frac{\sin \theta}{d\tau} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \frac{1}{3} \frac{\sin \theta}{d\tau} \frac{(b^{2})}{(b^{2})} \frac{d\theta}{d\tau}$$

$$\frac{1}{3} \frac{ds}{d\theta} = \frac{sinn\theta}{cosn\theta}$$

$$\frac{1}{3} \frac{dr}{d\theta} = \frac{tann\theta}{tann\theta}$$
Replace $\frac{dr}{d\theta} = -\frac{d\theta}{dr} r^2$

$$\frac{1}{3} \left[-r^2 \frac{d\theta}{dr} \right] = tann\theta$$

$$\frac{1}{3} tann\theta = -\frac{1}{3} dr$$

$$\frac{$$

Newton's Law of cooling:

let 'T' be the temperature of a body, To be the temperature of a body, To be the temperature of a body, To be the temperature of Surrounding medium at any time 't', by the property of the Newton's law of cooling the rate of temperature of body is directly porpostional to difference Between temperature of the and it's Sumpunding medium.

$$T = T_0 + e^{-Kt} + C$$

$$T = T_0 + e^{-Kt} + C$$

$$T = T_0 + e^{-Kt} + C$$

1. a copper ball originally at 180° cool down 80°C in 30 min. 40°C what will be the ball after 40 min from the origin.

the temperature of the air at any time (t)

W. K.T

given temps. of air to = 40°c

Given Tagoc when tao

(3) =>
$$T = 40 + 40 e^{(-0.0346)} + \rightarrow 4$$

when $t = 40 \text{ min}$
 $eq (4) => T = 40 + 40 e^{(-0.0346)} + 0$
 $T = 40 + 40 e^{-1.384}$
 $T = 50.6$

- a. The temperature of air is 30°C a metal ball cools from 100°C to 70°C in 15 min find How many long will it taken for metal to reach the temperature of 40°C
- => Suppose T be the temperature of metal ball To is temps of air at time 't'

given that To=30°C

Given T=100'c at t=0

$$3 = 1 + 0 = 30 + 10 e^{-Kt} \rightarrow 3$$

$$5 = 1 + 0 = 30 + 10 e^{-Kt} \rightarrow 3$$

$$10 = 30 + 10 e^{-(0.0373)}$$

$$10 = 30 + 10 e^{-(0.0373)}$$

-0.0373 t = In (0.1428)

- 0.0373t = 1.9463

t=52 mic 18 ec

- 3. A body is of heated 110°C and placed in air at 10°C after I hour lit's temp. becomes 60°c how much additional time is required to cool.
- ⇒ Suppose T be the temp. of the body, To is temp. of air

also given T = 30 t = ? 30 = 10 + 1000 - 10.01155)t10.0.2) = -0.01155t

t 2 139.345

t = ahours 19 min 34 Sec

4. A bottle of mineral water at a room temp. TRF is kept in refrigitor where the temps. is 44F after half of an hour, what are wolled 61F, what is the temps. of mineral water another half an hour.

=> From newton's law

:

To = 44F

T = 78F, when t= 0

h= 28

(a) =>
$$T = 44 + 38e^{-Kt} \rightarrow 3$$

 $T = 61F$, $t = 30$
(b) => $61 = 44 + 38e^{-30K}$
 $K = 0.01663$
(c) => $T = 44 + 38e^{-0.01663(60)}$
 $T = 44 + 10.323$
 $T = 54.32F$

- 5. A body in at 25°C whose from 100°C to 75°C in one minute, find the temperture of a body at 3 minutes.
 - =) From Newton's law

$$T = T_0 + \lambda e^{-\kappa t} \rightarrow (i)$$

Given that air temperture To

They given that T-100E at t=0

Flow of electricity: [L-R circuits]

The electrical circuit may have 3 passive elements they are resistance (R), inductance (L), capacitance (C) and active element be voltage source with a emf Source with (E) to a current (I) at any time 't'

. O. A Series circuit with resistance (R), inductance (L) and emf (E) governed by D.E.L di +Ri = E, where L.R Constant and intial, the current is zero. find the current at any time (t).

=> Given that resistance blu current resistance, and inductance, E is Ldi + Ri = E, RL constant

$$\frac{L}{dt} + Ri = E \rightarrow 0$$

$$-\frac{di}{dt} + Ri = E \rightarrow 0$$

$$\frac{di}{dt} + \left(\frac{R}{L}\right)i = \frac{E}{L} \rightarrow 2$$

$$P = RIL \qquad Q = E/L$$

Solution is given by ix I.F = \QIF dt +c

Substitute
$$eq^{\eta}$$
 (a) $in(\psi)$

$$i(t) = \frac{E}{R} - \frac{E}{R} e^{-(R/L)t}$$

$$i(t) = \frac{E}{R} \left[1 - e^{-(R/L)t} \right]$$

2. An Inductance 2H and resistance 20_1 are Connected to a Series emf 'E' holds if the current is intial Zero, when t=0 find the current at end 0.01 Sec if E = 100 volts ?

W.K.T the D.E of a L-R Circuit is

Gives the Current at any time 'tis

Given E = 100V, L = 2012 to find

Current t = 0.01 sec

1 (0.01) = 0.4758 Amp,

3. L-R series circuit D.E acted on by an emf 'E' Sinut, satisfy if there is no current in the arait intial, after the value of current any time (t).

=> The given D.E of L-R circuit

$$P = R/L , Q = E/L Sinwt$$

$$E. F = e^{SPdt} = e^{SR|Ldt} = e^{(R/L)t}$$

$$i \times IF = \int QI.F dt + K$$

$$i e^{(R/L)t} = \int \frac{E}{L} Sinwt e^{(R/L)t} dt + K$$

$$i e^{(R/L)t} = \frac{E}{L} \int e^{(R/L)t} Sinwt dt + K$$

$$i e^{(R/L)t} = \frac{E}{L} \frac{e^{(R/L)t}}{\sqrt{\frac{R^2}{L^2} + w^2}} Sin[wt - tan^{-1}(w/R_L)] + K$$

$$1 e^{(R/L)t} = \frac{E}{L} \frac{e^{(R/L)t}}{\sqrt{R^2 + w^2 + t^2}} Sin[wt - tan^{-1}(wL/R)] + K$$

$$i = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin[wt - tan^{-1}(wL/R)] + Ke^{(R/L)t}$$

$$w. K.T, t = 0, i = 0$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin[w(0) - tan^{-1}(wL/R)] + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + t^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) - tan^{-1}(wL/R)) + Ke^{(R/L)t}$$

$$0 = \frac{E}{\sqrt{R^2 + w^2 + tan^2}} Sin(w(0) -$$

4. Solve the D.E $L \frac{di}{dt} + Ri = 200 (Sin (300t))$ when L=0.05 and R=100-2. find the value of current (I) at any time 't', initial no current in circuit what values does apporach after long time.

=> w.K.T for D.F Ldi + Ri = 200 Sin (300)} The value of current at any time (t) in intial current is zem. $\frac{1(t)}{\sqrt{R^2+w^2l^2}} = \frac{\sin(\omega t - \phi) + e^{(R/L)t} \sin \phi \rightarrow 0}{\sin(\omega t - \phi)}$ by comparing given eqn with general R=100, L=0.05, E=200, W=300 $\sqrt{R^2 + W^2 L^2} = \sqrt{(100)^2 + (300^2)(0.05)^2} = 101.1187$ $\phi = \tan^{-1}(WL/R) = \tan^{-1}(300 \times 0.05) = 8.5307$ Sin (300 t - 8.5307) + e (100/0.05) t Sin (8.5307) 1) = i(t) = <u>800</u> ⇒ilt1 = 1.9778 Sin (300 t - 8.5307) + e^{200 0 t} (0.14833) Non linear differential equation: For $P = \frac{dy}{dx}$ the polynomial $A_n P^n + A_1 P^{n-1} + A_2 P^{n-2} + A_3 P^{n-3} + \cdots + A_n P^{n-n} = 0 \rightarrow 0$ is called Linear D. E For which Ao, A1, A2, A3.... An are the for of 2 and y then the solution of eqn can be done by the method of Solvable P. as fallow. (1) => [P+f,(x,y)][P-f,(x,y)], [P-f,(x,y)] -...[P-fn(x,y)]=0 => P-filziy) = 0 ... P. -f2 (xiy) =0 ... [P-fn127y]= 0 => P = f1 (214) -... P = f2 (214) -.... P = fn(214) => f, (2,y,c) = 0, F, (2,y,c)=0 ---... Fn (2,y,cn)=0

Fr
$$(x, y, c_1)$$
, $F_2(x, y, c_2)$ $F_{11}(x, y, c_{11}) = 0$

1. $\left(\frac{dy}{dx}\right)^2 - 7\left(\frac{dy}{dx}\right) + 13 = 0$

2. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

3. Solve $y\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

1. $\left(\frac{dy}{dx}\right)^2 + (x - y)\left(\frac{dy}{dx}\right) - x = 0$

$$y\rho^{2} - y\rho + x\rho - x = 0$$

$$y\rho(\rho-1) + x(\rho-1) = 0$$

$$\cos \theta \oplus \cdots$$

$$\rho-1 = 0$$

$$\Rightarrow \rho = 1$$

$$\Rightarrow \rho = 1$$

$$\Rightarrow dy = 1$$

$$\Rightarrow dy = -1$$

4. Solve
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$

$$\frac{p^2 - 1}{p} = \frac{x^2 - y^2}{xy}$$

$$\frac{p^2 - 1}{p} = \frac{x^2 - y^2}{xy}$$

$$\frac{p^2 - 1}{p} = \frac{x^2 - y^2}{xy}$$

$$\frac{xy}{p^2 - xy} = px^2 - py^2$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - x^2p + y^2p = 0$$

$$\frac{xy}{y^2 - xy} - \frac{x^2}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2 - xy} - \frac{xy}{y^2} - \frac{xy}{y^2} = 0$$

$$\frac{xy}{y^2$$

$$xp = -y$$

$$P = -\frac{y}{x}$$

$$\frac{dy}{dx} = -\frac{y}{x}$$

$$\int \frac{1}{y} dy = -\int \frac{1}{x} dx$$

$$\log y + \log x = \log c$$

$$\log \left(\frac{y}{x}\right) = \log c$$

$$\frac{y}{x} = c_1$$

$$\frac{y}{x} = c_1$$

$$\frac{y}{x} = c_1$$

$$y_{P} - x = 0$$
 $y_{P} = x$
 $P = x_{0}$
 $\frac{dy}{dx} = \frac{x_{0}}{y_{0}}$
 $y_{0} = \frac{x_{0}}{y_{0}}$

SICIT

The solution is
$$(y-c_1x)(y^2-x^2-2c_2)=0$$

-\(\frac{1}{9}\) dy = \(\left(\text{tosecx} \right) \dr -logy = log (\sin x) + log tan(\frac{1}{2}) + log (2 \log (\frac{1}{2}) = log (\sin x \cdot tan \frac{1}{2} \cdot \

=> Clairaut's equation:

The D.E of the form y=P(x)+f(x) is said to be Uairaut's form and it's Solution is obtained by replacing $P \rightarrow c$ the Solution becomes, y=E(x)+f(x) is called general Solution of Clairaut's and D.E differentiate partially wrt c, we get function interms of c and again replace or substitute in given Solution it is called Singular Solution.

①. Solve the clairant's equation $y = pz + \frac{a}{P}$

given y=Px+a > 0

which is in charact's form y = P(x) + F(x)

:. The Solution is $y = (x + \frac{\alpha}{c} \rightarrow 2)$

$$x - \frac{C_3}{\sigma} = 0$$

$$\chi = \frac{\alpha}{C^9}$$

:. The Sigular Solution is

(2) =>
$$y = x\sqrt{\frac{a}{x}} + \frac{a}{\sqrt{a}}$$

=> y= \(\overline{12}\)

a. Show that equation
$$xp^2 + px - py - y + 1 = 0$$
 where use Clairant's equation.
 $xp^2 + px - py + 1 - y = 0$

$$xP(P+1) - y(P+1) = -1$$

 $(P+1)(xP-y) = -1$

$$Px - y = -\frac{1}{(P+1)}$$

$$y = Px + 1 \rightarrow 0$$

ean (1) is charirout's equation

$$\frac{1}{(C+1)^2} = \chi$$

.. The solution of the following

$$y = (\frac{1}{\sqrt{x}} - 1) + \frac{1}{\sqrt{x}} - 1 + 1$$

3. Show that the equation
$$x p^3 - yp^2 + 1 = 0$$

$$xp^3 - yp^2 + 1 = 0$$

$$p^2 [xp-y] = -1$$

$$px - y = \frac{-1}{p^2} + px \rightarrow 0$$

=) Given that
$$(Px - y)(Py + x) = 2P \rightarrow (1)$$

$$\frac{dx}{dx} = 2x \frac{dy}{dy} = 2y$$

$$P = \frac{dy}{dy} \cdot \frac{dy}{dx} \cdot \frac{dx}{dx}$$

$$\left[\frac{px-y}{\sqrt{y}}\right]\left[(p+1)J\sqrt{x} = \frac{2\sqrt{x}p}{\sqrt{y}}\right]$$

$$(px-y)(p+1) = 3p$$

$$Px-y = 3p$$

$$p+1$$

$$y = px + \left(-\frac{3p}{p+1}\right)$$
The reduced eqn in
$$y = cx + \left(-\frac{3c}{c+1}\right)$$
5. Solve $e^{4x}(p-1) + e^{2xy}p^2 = 0$ by using Substitution $u = 3e^{2x}$ and $v = e^{2x}$

$$v = e^{2x}, \quad v = e^{2y}$$

$$\frac{dy}{dx} = 3e^{2x} \quad \frac{dy}{dy} = 3e^{2xy}$$

$$\frac{dy}{dx} = 3e^{2x} \quad \frac{dy}{dx} = 3e^{2xy}$$

$$v = e^{2x} \quad p$$

$$v = e^{xy} \quad p$$

6. Find the general and Singular Solution 22 [y-Pz] = p2y by taking into claricaut's form using substitution X=x2, y=42

$$\frac{dx}{dx} = 3x \qquad \frac{dy}{dy} = 3y$$

$$= 3x \qquad \frac{dy}{dy} = 3y$$

$$P = \frac{dy}{dy} \quad \frac{dy}{dx} \quad \frac{dx}{dx}$$

$$\frac{dx}{dy} = \frac{dy}{dy}$$

$$P = \frac{dy}{dy}$$

$$\frac{dy}{dx} = \frac{dx}{dx}$$

$$P = \frac{1}{dy} P ax$$

$$P = \frac{1}{dy} P ax$$

$$P = \frac{1}{\sqrt{y}} P x$$

$$P = \sqrt{x} P x$$

$$P = \sqrt{x} P x$$

$$P = \sqrt{x} P x$$

$$P = \sqrt{y} P x$$

$$\left(\frac{1}{\lambda - xb}\right) = \frac{\sqrt{\lambda}}{xb_3}$$

... The Solution is in Clairat's Solution

$$\lambda_5 = Cx_5 + C_5$$
 $\lambda = Cx + C_5 \rightarrow \odot$

.. The Singular Solution is

$$hh_5 + x_A = 0$$

$$hh_5 = -x_A$$

$$h_5 = -\frac{3x_A + x_A}{4}$$

$$h_5 = \left(-\frac{3}{x_5}\right) x_5 + \left(\frac{3}{x_5}\right)_5$$

7. Solve the $y^2(y-px)=x^4p^2$ by reducing it is in Clariat's form, taking the Substitution $x=\frac{1}{x}$, $Y=\frac{1}{y}$ \Rightarrow Given,

given,

$$y^{2}(y-Px) = x^{4}P^{2} \rightarrow 0$$
 $y^{2}(y-Px) = x^{4}P^{2} \rightarrow 0$
 $y^{2}(y-Px) = x^{4}P$

$$\Rightarrow \frac{\lambda_5}{1} \left(\frac{\lambda}{1} - \frac{\lambda_5}{b\lambda} \right) = \frac{\lambda_7}{b_5}$$

$$= \frac{\lambda_{A}}{[\lambda - bx]} = \frac{\lambda_{A}}{b_{5}}$$

$$\Rightarrow \lambda - bx = b_5$$

$$\Rightarrow P \times + P^2 = Y \Rightarrow 2$$

·. ② is clariat's equation

... The Solution is,

$$\frac{1}{\lambda} = \frac{2}{\lambda} + c_{3}$$

$$\frac{1}{\lambda} = \frac{2}{\lambda} + c_{3}$$

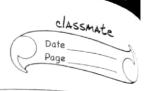
$$\frac{1}{\lambda} = \frac{2}{\lambda} + c_{3}$$

	classmate	0
	Date Page	
8		

								-
Given	812 8X1	tx2 tx3			, ,		of a tare	
911	42-211	12123					1	Ĩ
	43= X1	-22(3						
	the mat	rix forr	n b	fa CTi	2			
	1=1	XΑ				_		
į	3 = (y')	A =	2	\ 1	ال ال	द्रा		
	42		J	12	۲,۰	*2		
	, Up	1	1	n -2	1	X3	1	_

u) To p.9 L.T is regulat.

. 1				
12/2	2	1		
	ι	•	9	= -1+0
	l	0	-9	A
			6	•


The L.9 is regular (08) Non-Singular.

(2) To find Involve L.T:

$$A^{1} = adi(A) = 2 - 9 - 1$$
 $A^{2} = adi(A) = 3 - 9 - 1$
 $A^{3} = adi(A) = 3 - 9 - 1$
 $A^{4} = adi(A) = 3 - 9 - 1$
 $A^{4} = adi(A) = 3 - 9 - 1$

hence	X=	Y'A		_		> .		~ ~		
		(xi)	2	-2	-1)		91		_
		α_2	-	-u	5	3		y2		
		23		(~1	-1 J	(لعلا	\	1

21 - 241 242 - 42	3
az=-441+54+343	
23=41-42-43,	

8. Show that the following linear transformation is non similar and find its involve.

The matrix form of all is.

Light XA=Y

1	. ,	A 113				
V= (91)		2	- 2	-1_		2
1/2	X =	-4	5	3	*	22
(Y3)		Lı	-1	-1 -		23

1) To P.T L.T is segular

			_	
= /Al	2	-2	~)	i.
	-4	S	3	=-1 +0.
	1	-1	-1 ~	

the c-9 is regular (08) Non-Singular.

3) Tofind Soverse L.9

වි	1	1
١	1	2
(1	D	-2

hence $X = A^{-1}Y$.

21-241+92+93

23= 91 A-243.

17	Show that	the	following	linean	transformation	is non similar
	and find	efi	oknovii			3 (11/) (W)
-						

41 = 821- 6x2+ 8x3

42 = -621 + A72 - 4x3

43= 2x1-472+3x3

The modern forms of a LT is

Y= AX where

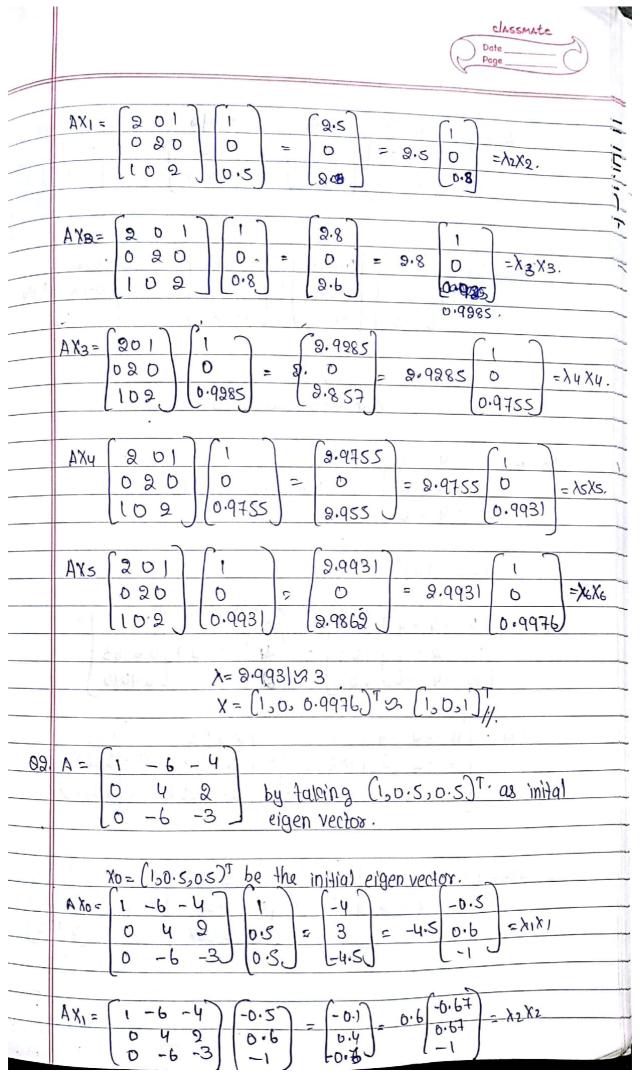
	A ^			A					
¥=	yi)			8	-6	5		α	١
	1/2	-	A=	8	7	-4	×	22	١
5	13	. ,	**:	2	-4	3,		X3_	

O To P.T. L.T is regular

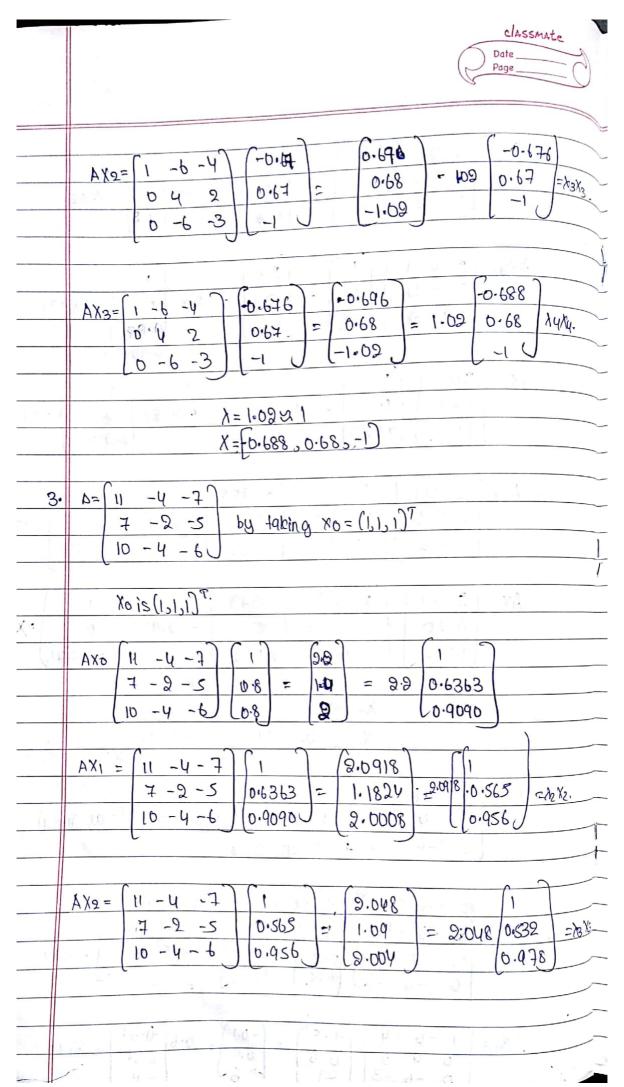
The L.T is regular (08) Non-Singular

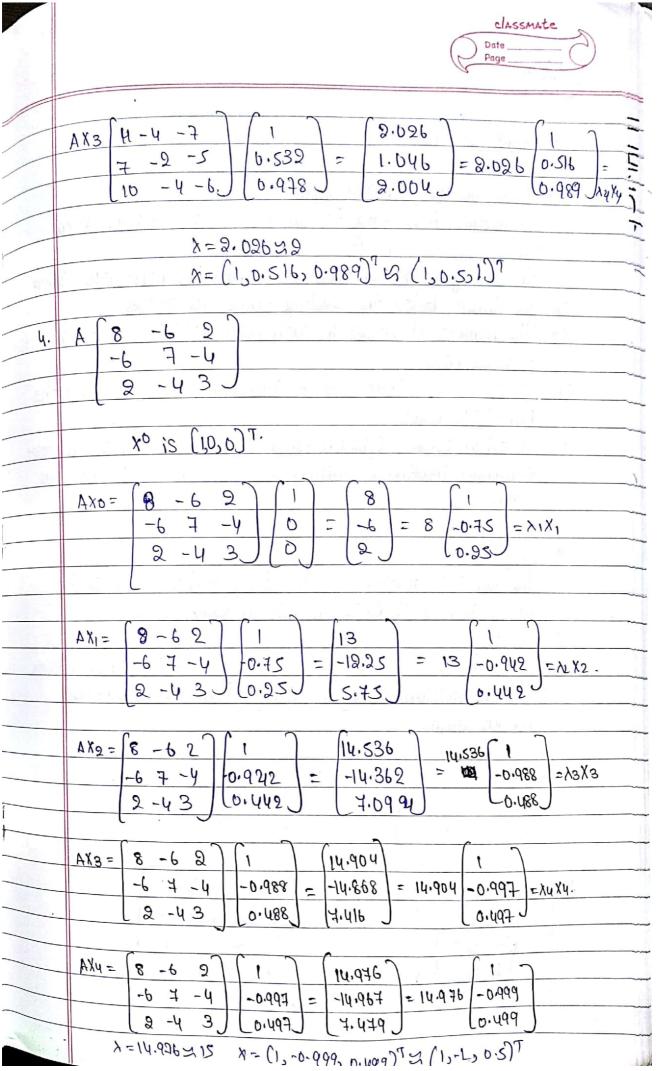
3 To find Involve L. 9

0.025	-0.95.	-0.85
-0.25	-0,5	-0.5
-0.35	-0.5	-0.1

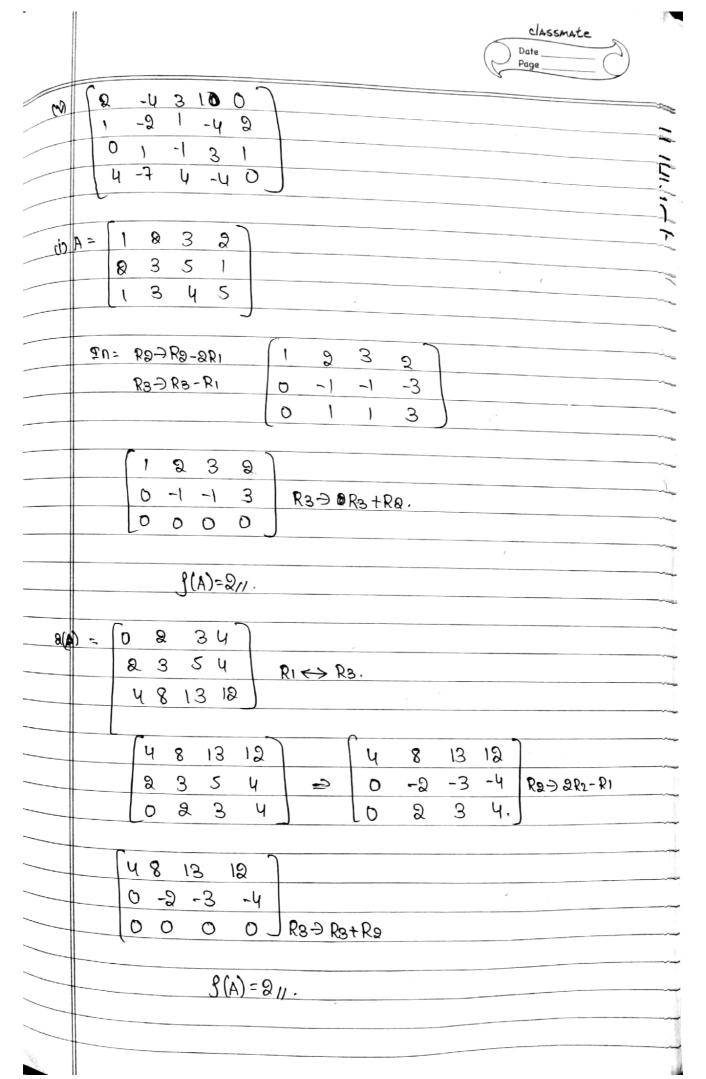

hong X=A'Y

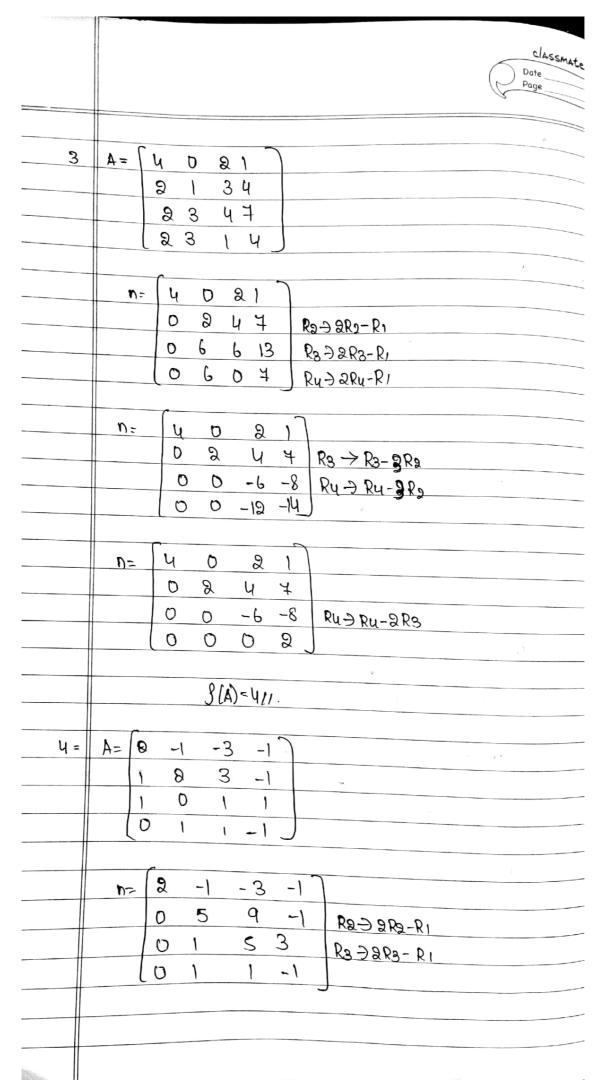
_		-		0.81			
	(عرا)	ir q	10.025	~0.95	-0.35	$\int y_1$,
	32	•	-0.25	-0.5	-0.2	/ y2	
	EX		-0.35	~0.5	-0.1	(ya)	

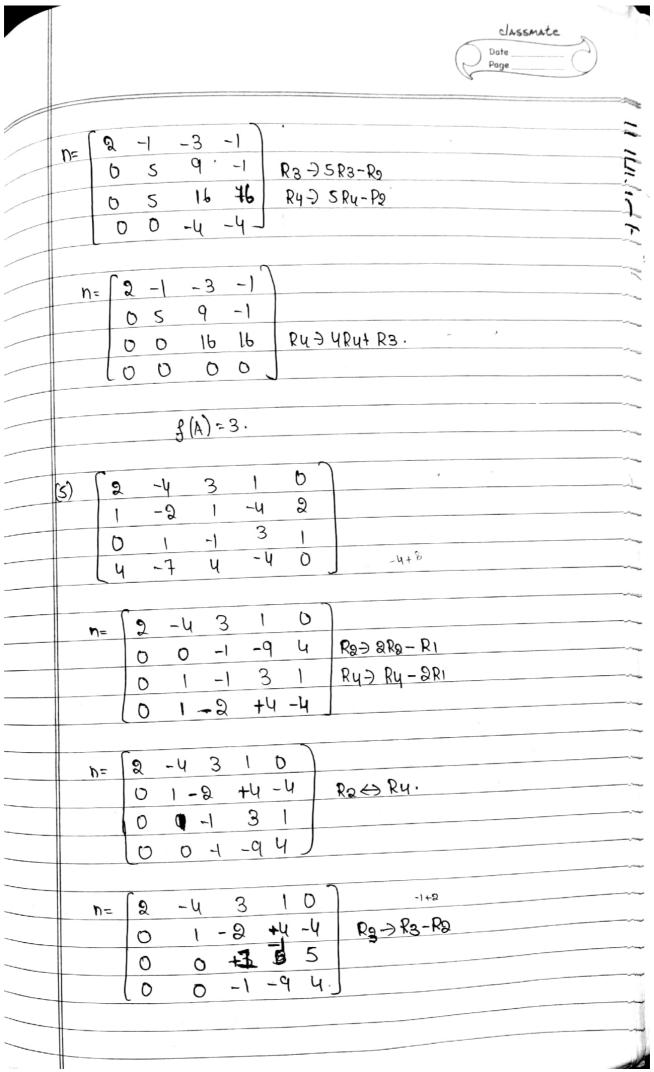

\$1=0.085y1 -0.85y2 -0.35y3

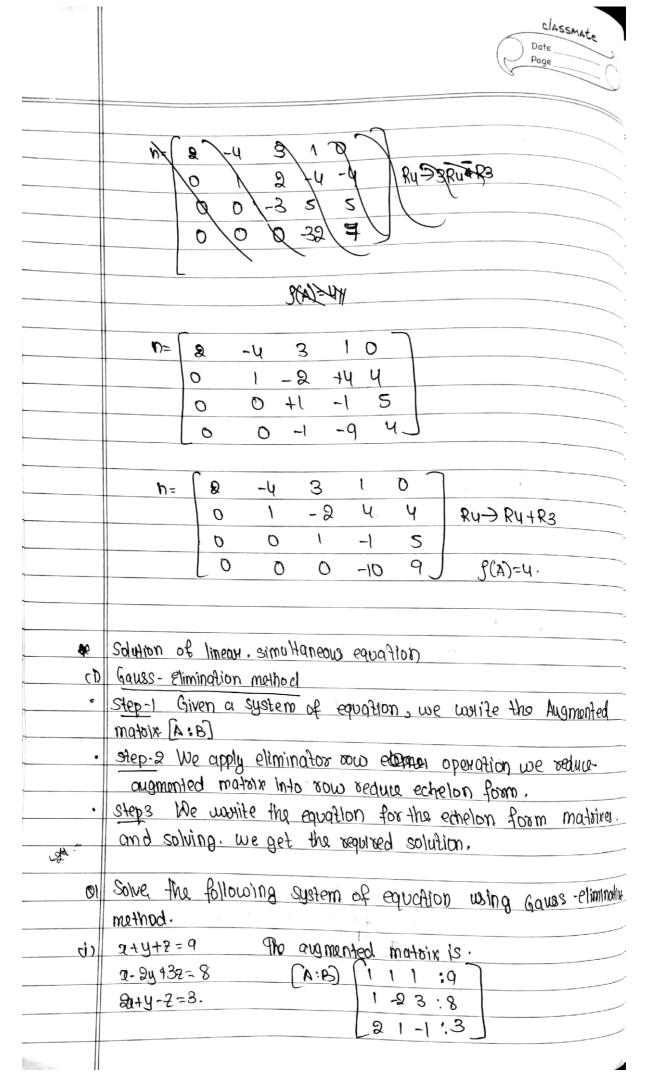

Olz= -0,2581 - 0.582 - 0.583

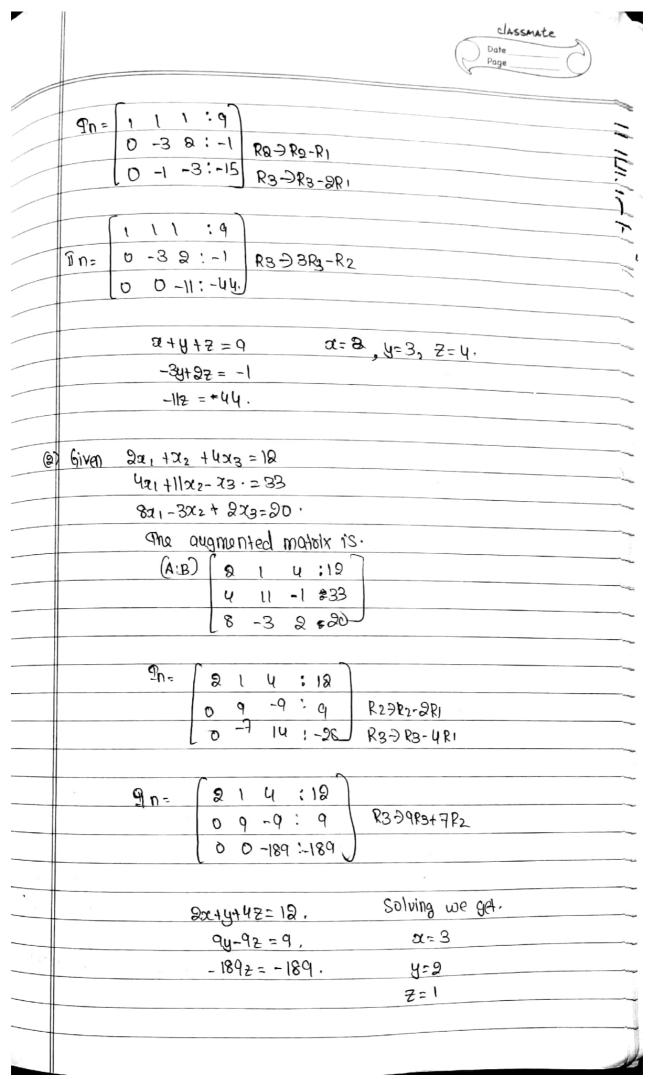
23=-0.3541 - 0.542 - 0.143.


Scanned by CamScanner

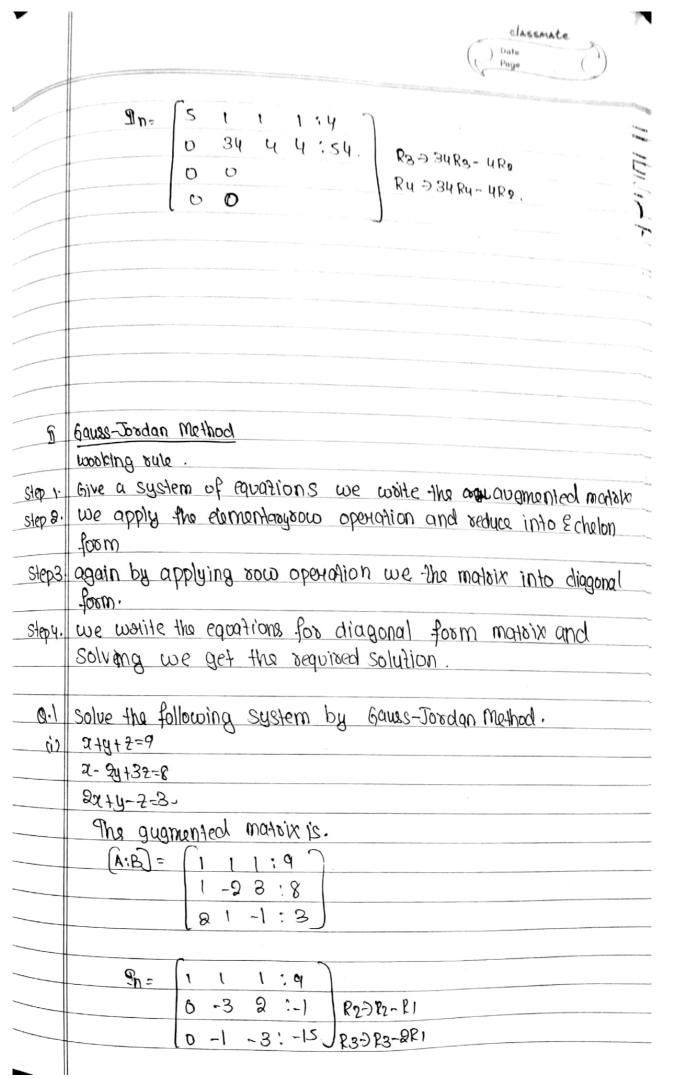


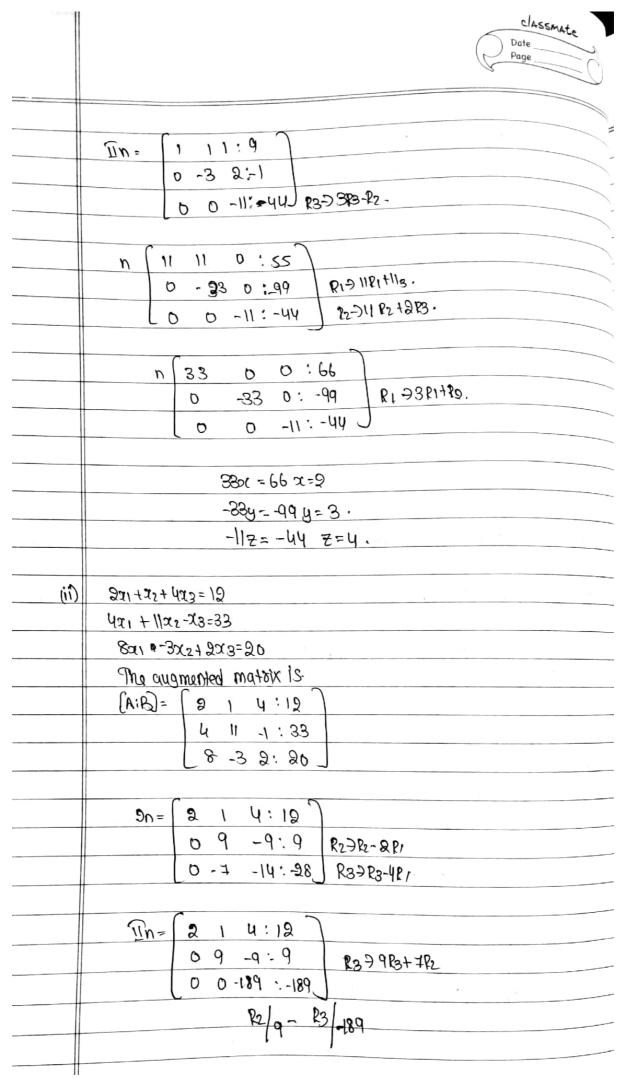

Scanned by CamScanner

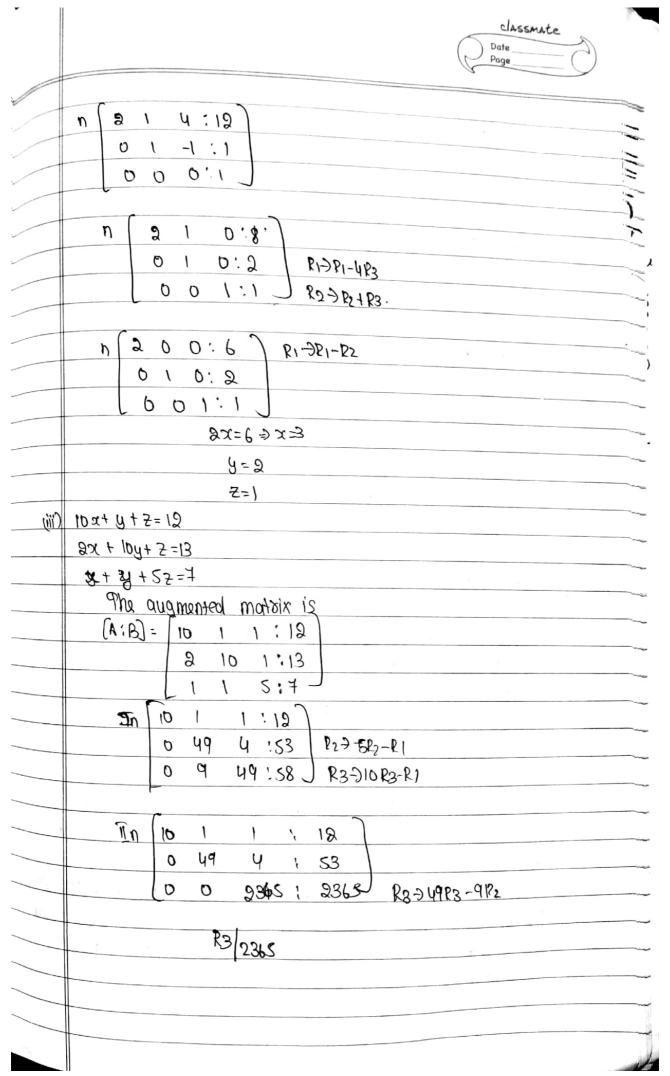

ou/u/	13
*	Rank of moutin
*	Row reduce Echelon from
	A matory 'A' is said to in sow reduce Echelon from
DI.	If it satisfies the following conditions. The leading entre of each row must be non-zero element.
08.	The element below the leading entire are zeroes.
03,	The number of zeroes in each sow must be goed to than its
	byenions for
Oy.	of there is a zero row it should be xwrite below the
	hon-zeho yows.
•	In other word echelon form martix represents an upper
	tolongular martix. Celement below the purinciple diagonal are
	2040).
- W	
*	Rank Dec Deck of making the land of the l
	The Rank of matrix 'A' denoted by S(A) representes the no. of non-zero rows in echelon form matrix.
0	March well some ill scuelou foem Watsix.
1,	find the rank of following matries appling plementary
	row transmitton or by reducing them to row reduced
	enchien form.
ci's	A (1 2 3 2) (ii) A = [0 2 3 4]
	2351 2354
	[1345] [481312]
	1 (4081) (W) (1804) A
Ris	9130
	2347 123-1
	[2314]

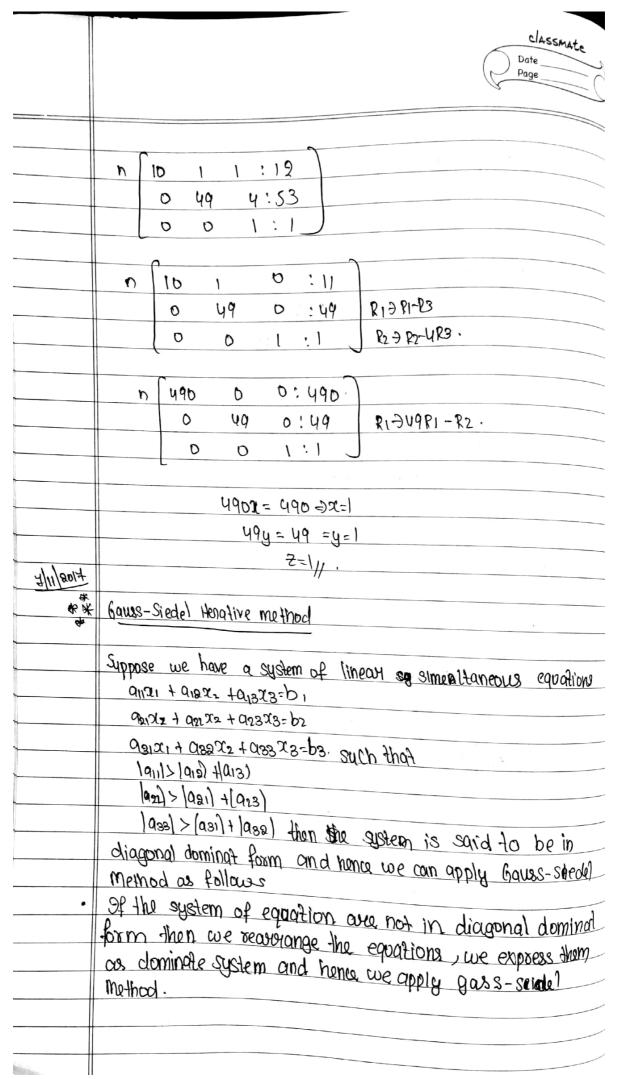


Scanned by CamScanner

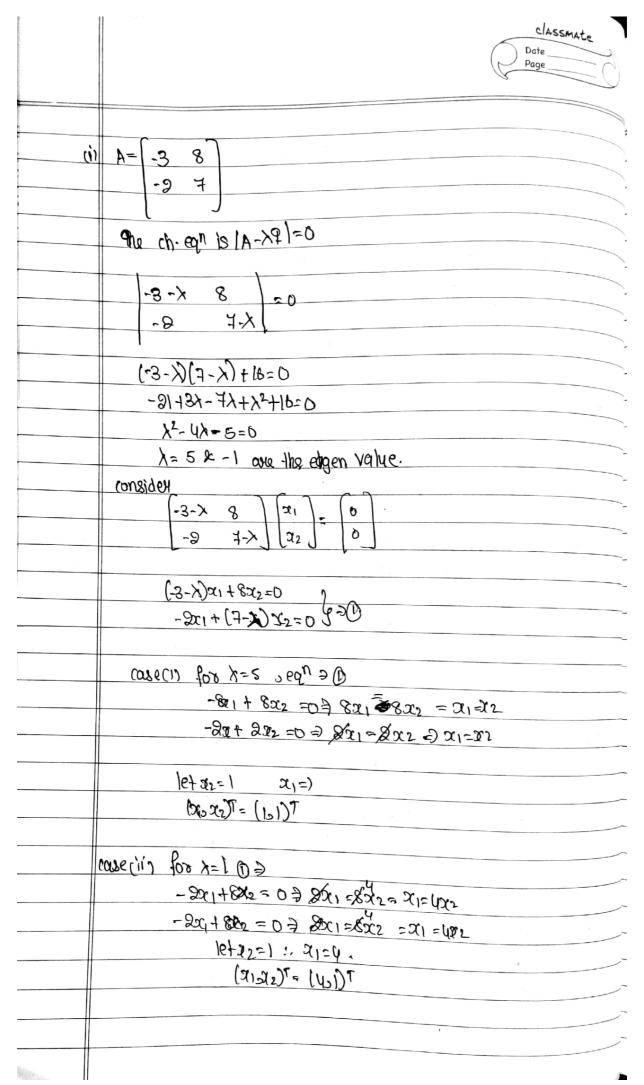


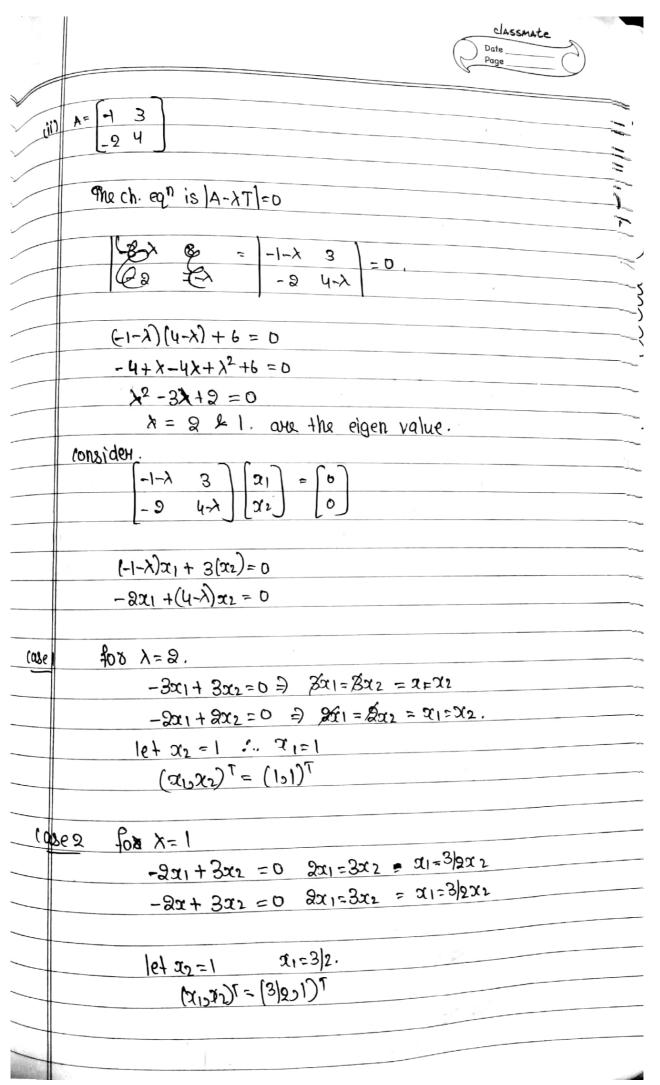


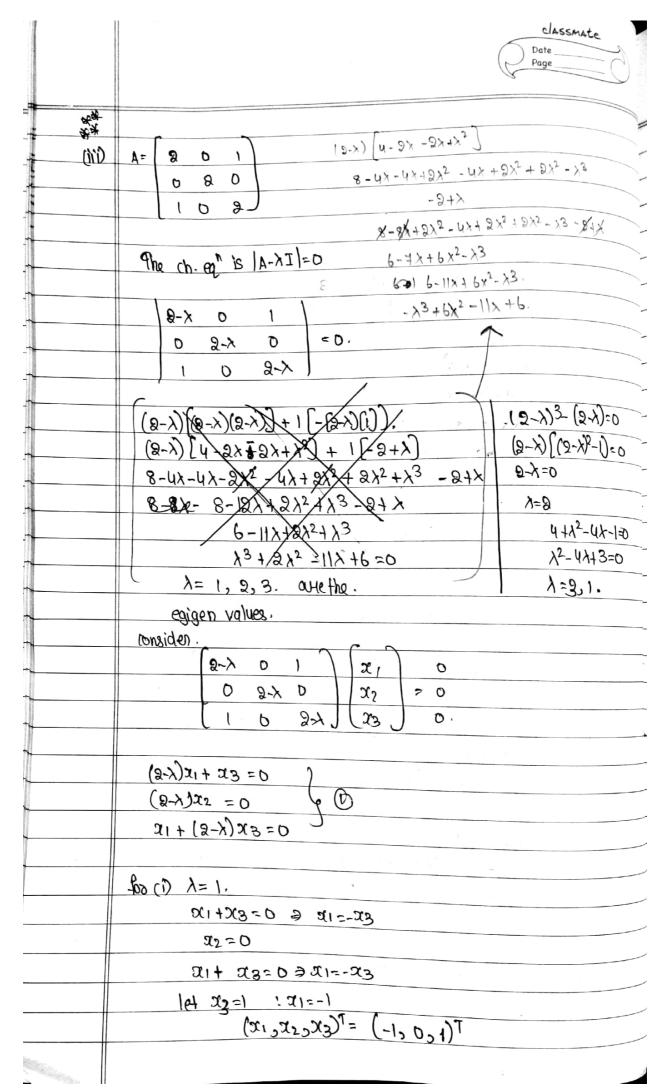




	Classmate Date Page
C iD	Given 10x+y+2=12
	8x + loyt 7 = B'
	x + y + Sz = 7
	The augmented matrix 1's.
	(A:B)= 10 1 1:B)
	9 10 1:13
	L(1 5!¥)
	9n = 10 1 1 : 19
	0 49 4:53 R275R2-R1
	0 9 49:58) \$37 10 13-121
	$\underline{\mathfrak{g}}_{\mathcal{D}}$ 10 1 1:12
	0 49 4:53 R3-7482.
	0 0 2365: 2365
	10x+y+z=12 solving use get
	99y+47 = 53
	23657 = 2365
3.7	
	5x1+ x2+ x3+x4=4.
	21+ 7x2+ xx+ = 12
	$x_1+x_2+6x_3+x_4=-5$
	21+22+23+ 4x4 =-6
	-2, -1, 1 ₂ 2
	The augmented motor 1s
	$(A:B)= \{S \mid 1 \mid 1 \mid 1 \mid Y \} $
	7 7 1 1:19 Ph 31 1 1 154 Rg-55
	3
	1 1 1 4:-6 O 4 29 4:29 1830 O 4 19 19: 34 2435
11	(O y D M.

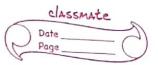

	Clas	ssmate
(,)	Date	
C	Page	
-		


	Page
0.1	Solve the following system of equation using Gauss-siedel
cb	$\frac{10x + 442 - 19}{34 0942 - 19} \qquad \frac{x = 1/10[12 - x - 3)}{x = 1/10[12 - x - 3)}$
7.0	$\frac{1}{10} = \frac{1}{10} $
I or	(3)2 = 1/10(12-0.9948-0.942) = 0.9948 (3)2 = 1/10(12-0.9948-1.0033) = 1.00003.
$\hat{\mathbb{D}}_3$	$\frac{d}{d\rho\rho} = (x)^{111} = \frac{1}{10}(12 - 1.0033 - 1.0000) = 0.9997$ $(x)^{111} = \frac{1}{10}(12 - 0.9997 - 1.0000) = 1.0000$ $(x)^{11} = \frac{1}{10}(12 - 0.9997 - 1.0000) = 1.0000$ $(x)^{2} = (1.01.1)$
(n)	$x+4y+2z=15$ $x+2y+5z=20$ $by \bullet $
	let (x,y,z)=(1,0,3) be the initial approximation.

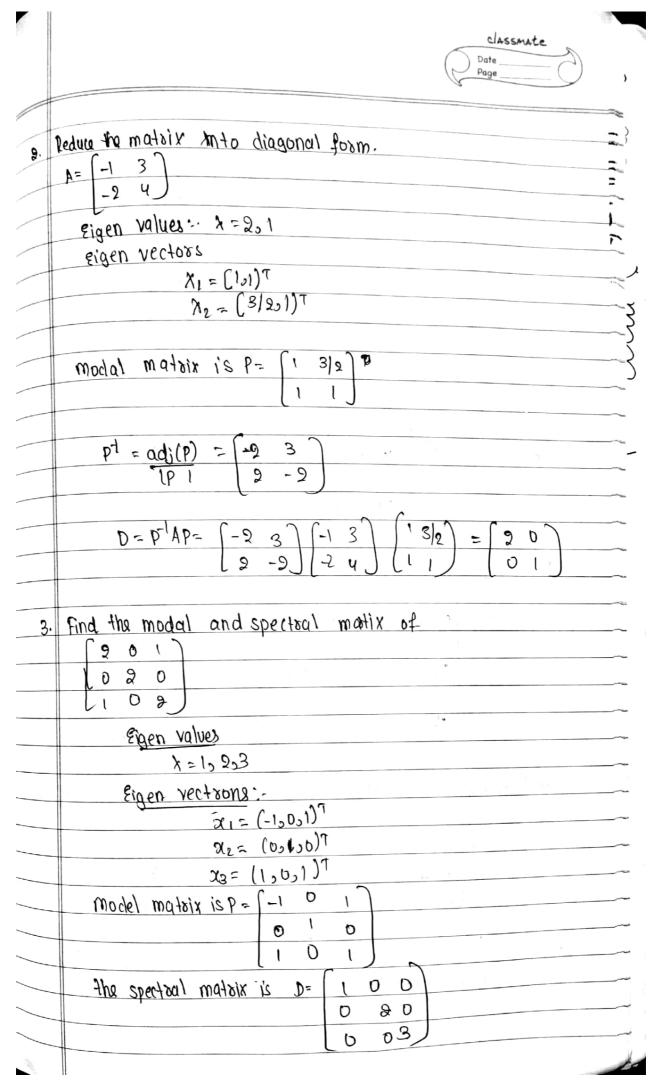

	Date
	Page
184	. (x)'= \[s(12-0-3)=1-8
- , oth	(y)'= 1/4/15-1.8-(2x3)=1.8 (z)'= 1/5 (20-1.8-(2x1.8))=2.95.
	(y) = (4)(3 - (3 - (3 - (3 - (3 - (3 - (3 - (3 -
	(2) = 1/5[80-1.8-(a/1.0)) =
ha	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2nd ar	$(x)'' = \frac{1}{8} \left[12 - 1.8 - 2.9.5 \right] = 1.096.$
	121-1412-1096-2.95)= 2.016
	(3)"=1 s(12-1-096-2×8/6)= 2.9744.
	18PP (x)"= 1/5[12-6x2.016)- 2.97444)=0.9987
311	(y)"= 1/4 (15-0.9987-(2x2-9744)) = 2.013)
	(2) "= (1/5) (20-0.9987- (2x2.0131)=2.9950.
	(210403)=(10203).
3.	2 + y + S42=110
	27x+6y-7=85.
	6x+15y+ 87= 72.
	Here, the given ean are not in diagonally dominant form
	Hence, we reavoyange the egh as follows.
	The property of the control of the c
	275C+6y-Z=85
	6x + 15y + 2z = 79
	2+y+S42=110.
	n - 110× (0x / -)
	$\alpha = 1/27 \left(85 - 6y + 7 \right)$
	y= 1/15[72-6x-2Z)
	Z=1/54[110-X-y)
	let (2000)= (Filest ant 3d (Ococo)= (Filest) +31
1 ⁵² 00	(x) = 1/34 (82-010) = 3.1481
	(y)' = 1 15 (79- (6x3-1481) -0) = 3.5408
	(2)1=1 SH (110-3.1481-3.5408)=1.9132
	(2) 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	classmat	e
	DatePage	$\overline{}$
1	3	

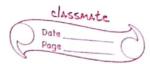
	Page
gnd ((2) 2= 1 84 (85- [8x3.5408) +1.9132)= 2.4382 (2) 2= 1 84 (110-2.4322)-(2x1.9132)= 3.5720.
110	のpp (対3=1/27 (85- (6x3·57 20) + 1·9258)= の4256 (ソ)3=1/15(72-(6x2·4856)-2(1·9258)= 3·5729. (セン3=1/54 (110-2·4256-3·5729)= 1·9259 (スッソッチ)=(2・42、3・57、1・925年).
9/10/2013	
9111	Eigen values and eigen vectors.
	- which #110
ક્ષ	of Give a square matrix As we carrie the characterist
_	2:00 10-101-0
Step	equation. 121 × 17 × 17 × 17 × 100 ×
	solving the polynomial we get the roots which are called
	as eigen values. 3 for each eigen value we solve the system of equations obtained from the characterist martix we get the eigen vectors.
Ø).	find the eigen values and cooperponding eigen vectors of the following maxiles.
ý,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Civ	A= \(8 -6 \ 9 \\ -6 \ 7 -4 \\ \[\begin{array}{cccccccccccccccccccccccccccccccccccc



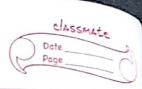
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$x_{1}=0 \qquad \qquad ket \ x_{2}=1 \ because \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	for \(\lambda = \(\gamma \).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	₹3 = 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x1=0 let x2=1 becomes 18 it becomes la p alis
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1600 11 - 70 6 (1/1) 1 (1/1) 10 1 1
$- x_1 + x_3 = 0 \implies -x_1 + x_3 = 0 \qquad x_1 = x_3$ $x_1 \bullet - x_3 = 0 \implies x_1 - x_3 = 0 \qquad x_1 = x_3$ $ x_1 \bullet - x_3 = 0 \implies x_1 - x_3 = 0 \qquad x_1 = x_3$ $ x_1 \bullet - x_3 = 0 \implies x_1 - x_3 = 0 \qquad x_1 = x_3$ $ x_1 \bullet - x_3 = 0 \implies x_1 - x_3 = 0 \qquad x_1 = x_3$ $ x_1 \bullet - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_3 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_2 = 0$ $ x_1 \circ - x_3 = 0 \implies x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_2 = 0 \implies x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_1 = x_1 = x_1 = x_2 = 0$ $ x_1 \circ - x_$	(Oc100) = [(Oc100)]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	for $\lambda = 3$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$- x_1+x_3=0$ = $-x_1+x_3=0$ $x_1=x_3$
	$- x_2=0$ = $-x_2=0$ $+x_2=0$
	$\alpha 1 \phi - 1 \alpha 3 = 0$. $\Rightarrow \alpha 1 - \alpha 3 \Rightarrow 0$ $\alpha 1 = \alpha 3$
$6(A) = \begin{cases} 8 & -6 & 2 \\ -6 & 4 & -4 \\ 8 & -4 & 3 \end{cases}$ $\begin{cases} 8-\lambda - 6 & 2 \\ -6 & 4-\lambda - 4 \\ 8 & -4 & 3-\lambda \end{cases}$ $\begin{cases} 8-\lambda - 6 & 2 \\ -6 & 4-\lambda - 4 \\ 8-\lambda & 16 \end{pmatrix} + 6 \begin{bmatrix} 6(3-\lambda) + 8 \end{bmatrix} + 2 \begin{bmatrix} 2u-2 (1-\lambda) - 2u \\ 2u-2u + 2u \\ 8u-2u + 2u - 4u \\ 8u-2u + 2u $	$4et \alpha_3=1 : \alpha_1=1$
$\begin{cases} 8-\lambda - 6 & 2 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -4 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ -6 & \frac{1}{4} - \frac{1}{4} \\ 8 & -6 & 3 \\ 8 & -7 & -6 & 3 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 & -7 & -7 & -7 \\ 8 &$	 $(x_1, x_2, x_3)^T = (1,0,1)^T$
	$\begin{cases} 8-\lambda - 6 & 2 \\ -6 & 4-\lambda - 4 \\ 8 & -4 & 3-\lambda \end{cases} = 0.$ $\begin{cases} 8-\lambda - 6 & 2 \\ -6 & 4-\lambda - 4 \\ 8 & -4 & 3-\lambda \end{cases} = 0.$ $\begin{cases} 8-\lambda - 6 & 2 \\ -6 & 4-\lambda - 4 \\ 8-\lambda - 6 & 2 \\ 8-\lambda$
and the state of t	
II	Land the state of



[COMP.] [COMP.] [FOR X = 0 3.] $fon X = 3$ $ga_{1} - 6a_{2} + 2a_{3} = 0$ $ga_{1} - 4a_{2} + 2a_{3} = 0$ $ga_{1} - 4a_{2} + 2a_{3} = 0$ $ga_{1} - 4a_{2} + 3a_{3} = 0$ $ga_{1} - 4a_{2} - 4a_{3} = 0$ $ga_{1} - 4a_{$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		case 8.
$-6x_1 + 4x_2 - 4x_3 = 0 \qquad -6x_1 + 4x_2 - 4x_3 = 0$ $9x_1 - 4x_2 + 3x_3 = 0 \qquad 9x_1 - 4x_2 + = 0$ $10x_2 3 \qquad using $cm,$ $-7x_1 - 6x_2 + 2x_3 = 0 \qquad 1 - 6x_2 - 2x_3 = 1$ $-6x_1 - 6x_2 - 4x_3 = 0 \qquad 1 - 6x_2 - 2x_3 = 1$ $-6x_1 - 6x_2 - 4x_3 = 0 \qquad 1 - 6x_2 - 2x_3 = 1$ $-6x_1 - 6x_2 - 4x_3 = 0 \qquad 1 - 6x_2 - 2x_3 = 1$ $-6x_1 - 4x_2 - 19x_3 = 0 \qquad 10 \qquad 400 \qquad 90 \qquad 1 - 2x_2 = 2x_3$ $-6x_1 - 4x_2 - 19x_3 = 0 \qquad 10 \qquad 400 \qquad 90 \qquad 1 - 2x_2 = 2x_3$ $-6x_1 - 4x_2 - 2x_3 = 1 \qquad 1 - 6x_2 - 2x_3 = 1$ $-6x_1 - 6x_2 - 2x_3 = 1 \qquad 1 - 6x_3 = 1$ $-6x_1 - 6x_2 - 2x_3 = 1 \qquad 1 - 6x_3 = 1$ $-6x_1 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_2 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_1 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_1 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_1 - 6x_1 - 6x_1 - 6x_1 - 6x_1 - 6x_2 = 1$ $-6x_1 - 6x_1 - 6x_$		Fox x=0=). fox x=3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$8x_1 - 6x_2 + 2x_3 = 0$ $5x_1 - 6x_2 + 2x_3 = 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 6 35 3	$-6x_1 + 7x_2 - 4x_3 = 0$ $-6x_1 + 4x_2 - 4x_3 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2\alpha_1 - 4\alpha_2 + 3\alpha_3 = 0 \qquad \qquad 2\alpha_1 - 4\alpha_2 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		State of the state
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		case 3 using ecm,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		for x=15.
$(\alpha_{1}, x_{2}, x_{3})^{T} = (b_{2}, 2)^{T}$ $(\alpha_{1}, x_{2}, x_{3})^{T} = (a_{1}, a_{2}, a_{3})^{T}$ $(\alpha_{1}, x_{2}, x_{3})^{T} = (a_{1}, a_{2}, a_{3})^{T}$ $(\alpha_{1}, a_{2}, a_{3})^{T} =$		
$(\alpha_{1}, x_{2}, x_{3})^{T} = (\iota_{5}, 2)^{T}$ $(\alpha_{1}, x_{2}, x_{3})^{T} = (\iota_{5}, x_{3})^{T}$ $(\alpha_{1}, x_{3}, x_{3})^{T} = (\iota_{5}, x_{3})^{T}$ $(\alpha_{1}, x_{3}, x_{3})^{T}$		$\frac{-6x_{1} - 6x_{2} - 4x_{3} = 6}{2} = \frac{x_{1}}{2} = \frac{x_{2}}{2} = \frac{x_{3}}{2} = \frac{x_{2}}{2} = \frac{x_{3}}{2} = \frac{x_{2}}{2} = \frac{x_{3}}{2} = x_$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\alpha (1 - 4) \chi_2 - 12 \chi_2 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\frac{x_1}{16} = \frac{x_2}{16} = \frac{x_3}{16} = \frac{1}{16}$ $\frac{x_1}{16} = \frac{x_1}{16} = \frac{x_2}{16} = \frac{x_3}{16} = \frac{1}{16}$ $\frac{x_1}{16} = \frac{x_1}{16} = \frac{x_1}{1$		
$\frac{x_1}{16} = \frac{x_2}{16} = \frac{x_3}{16} = \frac{1}{16}$ $\frac{x_1}{16} = \frac{x_3}{16} = \frac{1}{16}$ $\frac{x_1}{16} = \frac{x_1}{16} = \frac{x_2}{16} = \frac{x_3}{16} = \frac{1}{16}$ $\frac{x_1}{16} = \frac{x_1}{16} =$		$\frac{21}{1-6} = \frac{22}{15} = \frac{23}{15} \frac{(ase 3)}{1-6} = \frac{21}{1-7} = $
$\frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2 - 2} \frac{\alpha_{3} = 1}{2} \frac{\alpha_{1} = \alpha_{2} = \alpha_{3} = 1}{2} \frac{\alpha_{3} = 1}{2} $		
$(x_{1},x_{2},x_{3}) = (2010-2)^{\frac{1}{3}} \qquad (x_{1},x_{2},x_{3}) = (20-201)^{\frac{1}{3}},$ $V A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix} \qquad (h eqn S A - X^{\frac{1}{3}} = 0 = 1 - X + 1 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$		16 +8 -16 40 40 20
$(x_{1},x_{2},x_{3}) = (2,01) - 2)^{\frac{1}{3}} $ $(x_{1},x_{2},x_{3}) = (2,01) - 2$ $(x$		al = ext = x3 = 1
$V A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix} \qquad \text{The } (h eqn S A - XI) = 0 = \begin{bmatrix} 1 - \lambda & 1 & 3 \\ 1 & 5 - \lambda & 1 \end{bmatrix} = 0.$ $\begin{bmatrix} (1 - \lambda) \left[(S - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[1 - (S - \lambda) (3) \right) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[1 - (S - \lambda) (3) \right] \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) + 3 \left[1 - (S - \lambda) (3) \right] \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \right] + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) - 1 \right] - 1 \left[(3 - (1 - \lambda) + 3) \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0$ $\begin{bmatrix} (1 - \lambda) \left[(5 - \lambda) (1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3 \left[(1 - (1 - \lambda) + 3) \right] = 0 \\ (1 - \lambda) \left[(1 - \lambda) + 3 \left$		
$V A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix} \qquad \text{The } (h eq^n 15)A - \lambda^n 1 = 0 = 1 - \lambda \qquad 1 \qquad 3$ $1 & 5 & 1 \qquad 1 \qquad 1 \qquad 5 - \lambda \qquad 1 \qquad = 0.$ $[1 - \lambda] (3 - \lambda) (1 - \lambda) - 1 - 1 [3 - (1 - \lambda) + 3(1 - (5 - \lambda)/3)]. = 0$ $[1 - \lambda] [5 - 5\lambda - \lambda + \lambda^2 - 1] - 1 [3 - 1 + \lambda] + 3(1 - 15 + 3\lambda)]. = 0$ $[1 - \lambda] [4 - 6\lambda + \lambda^2] - 1 [2 + \lambda] + 3 [14 + 3\lambda] = 0$ $[4 - 6\lambda + \lambda^2] - 1 [2 + \lambda] + 3 [14 + 3\lambda] = 0$ $[4 - 6\lambda + \lambda^2] - 1 [2 + \lambda] + 3 [4 + 4\lambda] = 0$ $[-\lambda^3 + 4\lambda^2 - 2\lambda + 44 = 0.$ $[-\lambda^3 + 4\lambda^2 - 3\lambda + 44 = 0.$ $[-\lambda^3 + 4\lambda^2 - 3\lambda + 44 = 0.$		$(\alpha_{1}, \alpha_{2}, \alpha_{3}) = (\beta_{0}, 1)^{-1}$ $(\alpha_{1}, \alpha_{2}, \alpha_{3}) = (\beta_{0}, -2)^{-1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A 14- 15- 17- 18- 17- 18- 18- 18- 18- 18- 18- 18- 18- 18- 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V <u>f</u>	
$ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(1-\lambda)+3(1-(3-\lambda)(3))} = 0 $ $ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(3-\lambda)(3-\lambda)} + 3(1-13+3\lambda) = 0 $ $ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(3-\lambda)(3-\lambda)} + 3(1-13+3\lambda) = 0 $ $ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(3-\lambda)(3-\lambda)} + 3(1-13+3\lambda) = 0 $ $ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(1-\lambda)+3(1-13+3\lambda)} = 0 $ $ \frac{(1-\lambda)(3-\lambda)(1-\lambda)-1}{(1-\lambda)(3-\lambda)(1-\lambda)+3(1-\lambda$	U 7 (F-1)	
	Was STATE I	[311] 311 ->
$ \begin{bmatrix} [-\lambda] \left[s - 5\lambda - \lambda + \lambda^{2} - 1 \right] - 1 \left[3 - 1 + \lambda \right] + 3 \left[1 - 15 + 3\lambda \right] \cdot = 0 $ $ (1 - \lambda) \left[4 - 6\lambda + \lambda^{2} \right] - 1 \left[2 + \lambda \right] + 3 \left[1 + 13\lambda \right] = 0 $ $ 4 - 6\lambda + \lambda^{2} - 4\lambda + 6\lambda^{2} \cdot 4 - \lambda^{3} + 2 - \lambda \cdot 5 \cdot 42 + 9\lambda \cdot = 0 $ $ - \lambda^{3} - 10\lambda + 3\lambda^{2} + 2 - \lambda + 40 + 9\lambda \cdot = 0 $ $ = -\lambda^{3} + 3\lambda^{2} - 3\lambda + 44 = 0 $ $ = -\lambda^{3} + 3\lambda^{2} - 3\delta = 0 $		1 - 12 1 - 12 - 12 - 12 - 12 - 12 - 12
$ \begin{bmatrix} [-\lambda] \left[5 - 5\lambda - \lambda + \lambda^{2} - 1 \right] - 1 \left[3 - 1 + \lambda \right] + 3 \left[1 - 15 + 3\lambda \right] \cdot = 0 $ $ (1 - \lambda) \left[4 - 6\lambda + \lambda^{2} \right] - 1 \left[2 + \lambda \right] + 3 \left[1 + 13 + \lambda \right] = 0 $ $ 4 - 6\lambda + \lambda^{2} - 4\lambda + 6\lambda^{2} \cdot 4 - \lambda^{3} + 2 - \lambda \cdot 5 \cdot 42 + 9\lambda \cdot = 0 $ $ -\lambda^{3} - 10\lambda + 3\lambda^{2} + 2 - \lambda + 40 + 9\lambda \cdot = 0 $ $ = -\lambda^{3} + 3\lambda^{2} - 3\lambda + 44 = 0 $ $ = -\lambda^{3} + 3\lambda^{2} - 3\delta = 0 $		$(1-\lambda)(3-\lambda)(1-\lambda)-1(3-(1-\lambda)+3(1-(5-\lambda)(3)). = 0$
$ \begin{array}{rcl} & (1-\lambda)[4-6\lambda+\lambda^{2}]-1[2+\lambda]+3[14+3\lambda] = 0 \\ & 4-6\lambda+\lambda^{2}-4\lambda+6\lambda^{2} \cdot (1-\lambda^{3}+2-\lambda) \cdot (1-\lambda^{3}+2) \cdot (1-\lambda^{3$		1-x) 5-5x-x+x2-1, -1 (3-1+x) +3/1-15+3x7 =0
$-\lambda^{3} - 10\lambda + 3\lambda^{2} + 2 - \lambda + 40 + 9\lambda$ $-\lambda^{3} + 3\lambda^{2} - 2\lambda + 44 = 0$ $= -\lambda^{3} + 3\lambda^{2} - 36 = 0$	à	(1-X)[4-6X+X2 [-1]2+X]+3-14+3X]
$-\lambda^{3} - 10\lambda + 3\lambda^{2} + 2 - \lambda + 40 + 9\lambda$ $-\lambda^{3} + 3\lambda^{2} - 2\lambda + 44 = 0$ $= -\lambda^{3} + 3\lambda^{2} - 36 = 0$	1	4-6x+x2-4x+6x2 1-23+2-2 542+9x.=0
$= -\lambda^3 + \frac{1}{3}\lambda^2 - 36 = 0$	9-511	- 102+ 122+2-x+ 40+ 9x.
	TONE -	
h=-2,3 and 6 are the egige hvalues.		
a chile maines.		h=-2,3 and 6 are the enter number
		न्य द्यान्य गण्यावद्य .


	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
520	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 2 1 1 x 2 1 (1 7 x) x 3 = 0.
05014	$case \cdot 1$ for = -2. $case \cdot 2$ for = 3.
	$3x_1 + x_2 + 3x_3 = 0$ $-2x_1 + x_2 + 3x_3 = 0$
	$\alpha_1 + \beta_{\alpha_2} + \alpha_3 = 0 \qquad \alpha_1 + \beta_{\alpha_2} + \alpha_3 = 0$
	$3x_1 + x_2 + 3x_3 = 0$ $3x_1 + x_2 + -2x_3 = 0$
Sept 1	William Control of the Control of th
	case. 3 for 6. case 1. $\alpha 1 = -\alpha 2 = \alpha 3$
	$-5x_1 + x_2 + 3x_3 = 6$ $ 1 3 3 3 3 1 $
	$x_1 = x_2 + x_3 = 0$
	$3x_1 + x_2 + -5x_1 = 0$. $x_1 = -x_2 = x_3$
	-20 D 20.
	(03.09.
	13 -23 -21
-1	21 11 12
	$\alpha_1 = +\alpha_2 = \alpha_3$
-	$-5 +5 5 \cos 3 3 = -32 = 33$
	1 3 1-5 3 1-5 1
	$(\alpha_1, \alpha_2, \alpha_3)^{T} = (-1, 1, 1)^{T}$
	(Let 1 - 28)
	$\frac{\chi_1 - \chi_2}{2} = \frac{\chi_3}{2}$
	4 78 84
	1 1 1 0
	$(\alpha_{1}, \alpha_{2}, \alpha_{3})^{T} = (\alpha_{1}, \alpha_{2}, \alpha_{3})^{T}$
_	The state of the s
~	
~	
100	

	Page
*	Diagonialbation of a matrix
	work rule
	and Egen vector. and Egen vector.
	Vector.
	3. We find P-1 = adj (P) =
Stepi	:- We compute $d = P^{\dagger}AP = we get the required diagonalisation matrix$
Not	e The diagontal moduly D is also called as spectral moothlix.
1.	Diagonalisa $A = \begin{bmatrix} -3 & 8 \\ -2 & 7 \end{bmatrix}$
	repeat the process
	from the problem non of eigen values of eigen vertoos.
-	x= 5 and -1
1 -	· Eigen vectors!
v ·	$\Gamma(c) = 1X$
,	model matrix is P= (14)
	p-1 = ddj(P) = -1/3 4/3
	IPI (1/3 -1/3)
	2 pd = 1 = 1 = 1 = 1
	P P'AP= -1/3 4/3 [-3 8] 1 4]
•	1/3 -1/3 [-2 7] [1]
,	
	$D = \begin{pmatrix} 5 & 0 \\ 0 - 1 \end{pmatrix}$
Sika	



*	Quadratic forms: A homogenous equation in any number of variables of 2° degree is called as a quadratic forms In general, an $x_1^2 + 2a_2 x_1x_2 + 4x_2x_2^2$ represents a quadratic form in two variables similarly a quadratic form in three variables can be return as. an $x_1^2 + a_{22} x_2^2 + a_{33} x_3^2 + 2a_{12} x_1 x_2 + 2a_{23} x_2 x_3 + 2a_{31} x_3 x_1$
*	
(9)	1000 1000
(6	$A = \left\{ \begin{array}{ccc} \text{coeffic of } x_1^2 & 1/2 \text{ coff } a_1 x_2 \end{array} \right\}$
	112 (offe of 2122 coffe of 222)
1	8 + 18 1 1 1 141 1 x 8 1 9 1 9 1
(P)	for three variables
	$A = \begin{cases} coeff of x_1^2 & \frac{1}{2} coff x_1 x_2 & \frac{1}{2} coff x_1 x_3 \end{cases}$
	1/2 coeff of x1x2 coff of x2 1/2 coff x2x3
	(1/2 coff x1x3 /2 coff x2x3)
*	Reducing of Quadractic form x campanical form or Sum of
	Stept Given OF, we write its maralries \$
	Step 2. We find Eigen values of the mouthing
	Step3. Of X12 x2 2x2 and comment of the mountain
	Step3. Of X12 x2 2 x3 are sigen the values of matrix then the required connonical form or som of square is x142 + x242 + x3433
	13 16.3 1. 202 7/8 B
- 11	

	Page		
ا. م.	Rank = Signature and nature of BF Rank = No. of non zero eigen values. Signature = No. of positive Eigen values - no. of negative Eigen value nature = B = is if all eigen values are positive = tve definite (ii) if all eigen values are negative = ve definite. Value are positive = no. of negative = ve definite.		
100	value are positive = "positive semi definite" (iv) if any one eigen value is zero and all other eigen value are negative = "negative semi definite" (v) of free weigen value are positive and eigen value negative = "in definite"		
11/20	14 - Mayorive - III cleamine		
111/2			
*	Reduce the audioaduatic form to. 2212+ 2222 + 2232 tax 3 into cannonical form. Hence find its stank, index, signature and nature.		
/•	82174 822 + 8218 + 821X3		
·	The motorix of OF is		
	from problem no 3 of Eigen values and Eigen vectors,		
.367	we have. $(\mathcal{E}_{e}\mathcal{R}_{c}) = (\mathcal{E}_{k}(\mathcal{E}_{c}\mathcal{K}_{c}))$		
	The Connonical form (00) = 412+ 2422+3432.		
	Sum of guare.		
	(1) Pank = 3.		
	tini) signature = 3-0=3.		

ನ.	Padring The D. district Prince		
	Reduce the anadometic form 822 + 74+ 322 - 12xy - 889 + 422=0: sum of squares using		
	The motion of 00 is	CZ=0: SOM OF SUDDUS Win	
125	The motoix of af is.	oothogonal toan fermassio	
1700 00	A= 8 -6 +9	method. And its runn	
t-10	-6 4 -4 =A	Sinder signature, nature,	
7.	[+2-4 3	CH ·	
27 Y 2	A service as A C Co	at a Grade 100	
4	from problem on @ of Eigen values an Eigen vectors we have		
	(SI c E c O) = (E/C c K c K c K c K c K c K c K c K c K c		
1000		1 1 3 2	
	$891^2 + 15y3^3 = 0$ $891^2 + 15y3^3 = 0$		
	9ndex = 2		
	Signature = 2-1=1		
201 10	nature = positive semi definite.	and the state of the same of	
	rigrade - positive senti aufinile.	Ser a You Land State of the Service	
g,	Reduce the Occadetic form.	Not by the Total States	
	2124 Sx22 + 2x32 + 2x,724 6x,722 + C	From intercons 10.	
	and find rank, index signature nature.		
	That sales single signal of	HUTUH.	
	11 1 3		
	A) 85 1		
200/00	11 3 - 1 - 1 - 1 + 1 - 1	7	
	from troblem on @ of Eige	en values on example	
	we have	The values out eigen versus	
	(20306) = (-20306)	- Action	
	$-3y_1^2 + 3y_2^2 + 6y_3^2 = 0$		
	Rank=3		
	Index = 2	E - 1 du	
- 11	Signature = 2-1=1		
	31100141100 = 4-1 -1	- 1 C . All . A. / .	